auto import from //depot/cupcake/@135843
diff --git a/libpixelflinger/codeflinger/blending.cpp b/libpixelflinger/codeflinger/blending.cpp
new file mode 100644
index 0000000..f10217b
--- /dev/null
+++ b/libpixelflinger/codeflinger/blending.cpp
@@ -0,0 +1,682 @@
+/* libs/pixelflinger/codeflinger/blending.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License"); 
+** you may not use this file except in compliance with the License. 
+** You may obtain a copy of the License at 
+**
+**     http://www.apache.org/licenses/LICENSE-2.0 
+**
+** Unless required by applicable law or agreed to in writing, software 
+** distributed under the License is distributed on an "AS IS" BASIS, 
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
+** See the License for the specific language governing permissions and 
+** limitations under the License.
+*/
+
+#include <assert.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <sys/types.h>
+
+#include <cutils/log.h>
+
+#include "codeflinger/GGLAssembler.h"
+
+
+namespace android {
+
+void GGLAssembler::build_fog(
+                        component_t& temp,      // incomming fragment / output
+                        int component,
+                        Scratch& regs)
+{
+   if (mInfo[component].fog) {
+        Scratch scratches(registerFile());
+        comment("fog");
+
+        integer_t fragment(temp.reg, temp.h, temp.flags);
+        if (!(temp.flags & CORRUPTIBLE)) {
+            temp.reg = regs.obtain();
+            temp.flags |= CORRUPTIBLE;
+        }
+
+        integer_t fogColor(scratches.obtain(), 8, CORRUPTIBLE); 
+        LDRB(AL, fogColor.reg, mBuilderContext.Rctx,
+                immed12_pre(GGL_OFFSETOF(state.fog.color[component])));
+
+        integer_t factor(scratches.obtain(), 16, CORRUPTIBLE);
+        CONTEXT_LOAD(factor.reg, generated_vars.f);
+
+        // clamp fog factor (TODO: see if there is a way to guarantee
+        // we won't overflow, when setting the iterators)
+        BIC(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, ASR, 31));
+        CMP(AL, factor.reg, imm( 0x10000 ));
+        MOV(HS, 0, factor.reg, imm( 0x10000 ));
+
+        build_blendFOneMinusF(temp, factor, fragment, fogColor);
+    }
+}
+
+void GGLAssembler::build_blending(
+                        component_t& temp,      // incomming fragment / output
+                        const pixel_t& pixel,   // framebuffer
+                        int component,
+                        Scratch& regs)
+{
+   if (!mInfo[component].blend)
+        return;
+        
+    int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc;
+    int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst;
+    if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA)
+        fs = GGL_ONE;
+    const int blending = blending_codes(fs, fd);
+    if (!temp.size()) {
+        // here, blending will produce something which doesn't depend on
+        // that component (eg: GL_ZERO:GL_*), so the register has not been
+        // allocated yet. Will never be used as a source.
+        temp = component_t(regs.obtain(), CORRUPTIBLE);
+    }
+
+    // we are doing real blending...
+    // fb:          extracted dst
+    // fragment:    extracted src
+    // temp:        component_t(fragment) and result
+
+    // scoped register allocator
+    Scratch scratches(registerFile());
+    comment("blending");
+
+    // we can optimize these cases a bit...
+    // (1) saturation is not needed
+    // (2) we can use only one multiply instead of 2
+    // (3) we can reduce the register pressure
+    //      R = S*f + D*(1-f) = (S-D)*f + D
+    //      R = S*(1-f) + D*f = (D-S)*f + S
+
+    const bool same_factor_opt1 =
+        (fs==GGL_DST_COLOR && fd==GGL_ONE_MINUS_DST_COLOR) ||
+        (fs==GGL_SRC_COLOR && fd==GGL_ONE_MINUS_SRC_COLOR) ||
+        (fs==GGL_DST_ALPHA && fd==GGL_ONE_MINUS_DST_ALPHA) ||
+        (fs==GGL_SRC_ALPHA && fd==GGL_ONE_MINUS_SRC_ALPHA);
+
+    const bool same_factor_opt2 =
+        (fs==GGL_ONE_MINUS_DST_COLOR && fd==GGL_DST_COLOR) ||
+        (fs==GGL_ONE_MINUS_SRC_COLOR && fd==GGL_SRC_COLOR) || 
+        (fs==GGL_ONE_MINUS_DST_ALPHA && fd==GGL_DST_ALPHA) ||
+        (fs==GGL_ONE_MINUS_SRC_ALPHA && fd==GGL_SRC_ALPHA);
+
+
+    // XXX: we could also optimize these cases:
+    // R = S*f + D*f = (S+D)*f
+    // R = S*(1-f) + D*(1-f) = (S+D)*(1-f)
+    // R = S*D + D*S = 2*S*D
+
+
+    // see if we need to extract 'component' from the destination (fb)
+    integer_t fb;
+    if (blending & (BLEND_DST|FACTOR_DST)) { 
+        fb.setTo(scratches.obtain(), 32); 
+        extract(fb, pixel, component);
+        if (mDithering) {
+            // XXX: maybe what we should do instead, is simply
+            // expand fb -or- fragment to the larger of the two
+            if (fb.size() < temp.size()) {
+                // for now we expand 'fb' to min(fragment, 8)
+                int new_size = temp.size() < 8 ? temp.size() : 8;
+                expand(fb, fb, new_size);
+            }
+        }
+    }
+
+
+    // convert input fragment to integer_t
+    if (temp.l && (temp.flags & CORRUPTIBLE)) {
+        MOV(AL, 0, temp.reg, reg_imm(temp.reg, LSR, temp.l));
+        temp.h -= temp.l;
+        temp.l = 0;
+    }
+    integer_t fragment(temp.reg, temp.size(), temp.flags);
+
+    // if not done yet, convert input fragment to integer_t
+    if (temp.l) {
+        // here we know temp is not CORRUPTIBLE
+        fragment.reg = scratches.obtain();
+        MOV(AL, 0, fragment.reg, reg_imm(temp.reg, LSR, temp.l));
+        fragment.flags |= CORRUPTIBLE;
+    }
+
+    if (!(temp.flags & CORRUPTIBLE)) {
+        // temp is not corruptible, but since it's the destination it
+        // will be modified, so we need to allocate a new register.
+        temp.reg = regs.obtain();
+        temp.flags &= ~CORRUPTIBLE;
+        fragment.flags &= ~CORRUPTIBLE;
+    }
+
+    if ((blending & BLEND_SRC) && !same_factor_opt1) {
+        // source (fragment) is needed for the blending stage
+        // so it's not CORRUPTIBLE (unless we're doing same_factor_opt1)
+        fragment.flags &= ~CORRUPTIBLE;
+    }
+
+
+    if (same_factor_opt1) {
+        //  R = S*f + D*(1-f) = (S-D)*f + D
+        integer_t factor;
+        build_blend_factor(factor, fs, 
+                component, pixel, fragment, fb, scratches);
+        // fb is always corruptible from this point
+        fb.flags |= CORRUPTIBLE;
+        build_blendFOneMinusF(temp, factor, fragment, fb);
+    } else if (same_factor_opt2) {
+        //  R = S*(1-f) + D*f = (D-S)*f + S
+        integer_t factor;
+        // fb is always corrruptible here
+        fb.flags |= CORRUPTIBLE;
+        build_blend_factor(factor, fd,
+                component, pixel, fragment, fb, scratches);
+        build_blendOneMinusFF(temp, factor, fragment, fb);
+    } else {
+        integer_t src_factor;
+        integer_t dst_factor;
+
+        // if destination (fb) is not needed for the blending stage, 
+        // then it can be marked as CORRUPTIBLE
+        if (!(blending & BLEND_DST)) {
+            fb.flags |= CORRUPTIBLE;
+        }
+
+        // XXX: try to mark some registers as CORRUPTIBLE
+        // in most case we could make those corruptible
+        // when we're processing the last component
+        // but not always, for instance
+        //    when fragment is constant and not reloaded
+        //    when fb is needed for logic-ops or masking
+        //    when a register is aliased (for instance with mAlphaSource)
+
+        // blend away...
+        if (fs==GGL_ZERO) {
+            if (fd==GGL_ZERO) {         // R = 0
+                // already taken care of
+            } else if (fd==GGL_ONE) {   // R = D
+                // already taken care of
+            } else {                    // R = D*fd
+                // compute fd
+                build_blend_factor(dst_factor, fd,
+                        component, pixel, fragment, fb, scratches);
+                mul_factor(temp, fb, dst_factor);
+            }
+        } else if (fs==GGL_ONE) {
+            if (fd==GGL_ZERO) {         // R = S
+                // NOP, taken care of
+            } else if (fd==GGL_ONE) {   // R = S + D
+                component_add(temp, fb, fragment); // args order matters
+                component_sat(temp);
+            } else {                    // R = S + D*fd
+                // compute fd
+                build_blend_factor(dst_factor, fd,
+                        component, pixel, fragment, fb, scratches);
+                mul_factor_add(temp, fb, dst_factor, component_t(fragment));
+                if (fd==GGL_ONE_MINUS_SRC_ALPHA) {
+                    // XXX: in theory this is not correct, we should
+                    // saturate here. However, this mode is often
+                    // used for displaying alpha-premultiplied graphics,
+                    // in which case, saturation is not necessary.
+                    // unfortunatelly, we have no way to know.
+                    // This is a case, where we sacrifice correctness for
+                    // performance. we should probably have some heuristics.
+                } else {
+                    component_sat(temp);
+                }
+            }
+        } else {
+            // compute fs
+            build_blend_factor(src_factor, fs, 
+                    component, pixel, fragment, fb, scratches);
+            if (fd==GGL_ZERO) {         // R = S*fs
+                mul_factor(temp, fragment, src_factor);
+            } else if (fd==GGL_ONE) {   // R = S*fs + D
+                mul_factor_add(temp, fragment, src_factor, component_t(fb));
+                component_sat(temp);
+            } else {                    // R = S*fs + D*fd
+                mul_factor(temp, fragment, src_factor);
+                if (scratches.isUsed(src_factor.reg))
+                    scratches.recycle(src_factor.reg);
+                // compute fd
+                build_blend_factor(dst_factor, fd,
+                        component, pixel, fragment, fb, scratches);
+                mul_factor_add(temp, fb, dst_factor, temp);
+                if (!same_factor_opt1 && !same_factor_opt2) {
+                    component_sat(temp);
+                }
+            }
+        }
+    }
+
+    // now we can be corrupted (it's the dest)
+    temp.flags |= CORRUPTIBLE;
+}
+
+void GGLAssembler::build_blend_factor(
+        integer_t& factor, int f, int component,
+        const pixel_t& dst_pixel,
+        integer_t& fragment,
+        integer_t& fb,
+        Scratch& scratches)
+{
+    integer_t src_alpha(fragment);
+
+    // src_factor/dst_factor won't be used after blending,
+    // so it's fine to mark them as CORRUPTIBLE (if not aliased)
+    factor.flags |= CORRUPTIBLE;
+
+    switch(f) {
+    case GGL_ONE_MINUS_SRC_ALPHA:
+    case GGL_SRC_ALPHA:
+        if (component==GGLFormat::ALPHA && !isAlphaSourceNeeded()) {
+            // we're processing alpha, so we already have
+            // src-alpha in fragment, and we need src-alpha just this time.
+        } else {
+           // alpha-src will be needed for other components
+            if (!mBlendFactorCached || mBlendFactorCached==f) {
+                src_alpha = mAlphaSource;
+                factor = mAlphaSource;
+                factor.flags &= ~CORRUPTIBLE;           
+                // we already computed the blend factor before, nothing to do.
+                if (mBlendFactorCached)
+                    return;
+                // this is the first time, make sure to compute the blend
+                // factor properly.
+                mBlendFactorCached = f;
+                break;
+            } else {
+                // we have a cached alpha blend factor, but we want another one,
+                // this should really not happen because by construction,
+                // we cannot have BOTH source and destination
+                // blend factors use ALPHA *and* ONE_MINUS_ALPHA (because
+                // the blending stage uses the f/(1-f) optimization
+                
+                // for completeness, we handle this case though. Since there
+                // are only 2 choices, this meens we want "the other one"
+                // (1-factor)
+                factor = mAlphaSource;
+                factor.flags &= ~CORRUPTIBLE;           
+                RSB(AL, 0, factor.reg, factor.reg, imm((1<<factor.s)));
+                mBlendFactorCached = f;
+                return;
+            }                
+        }
+        // fall-through...
+    case GGL_ONE_MINUS_DST_COLOR:
+    case GGL_DST_COLOR:
+    case GGL_ONE_MINUS_SRC_COLOR:
+    case GGL_SRC_COLOR:
+    case GGL_ONE_MINUS_DST_ALPHA:
+    case GGL_DST_ALPHA:
+    case GGL_SRC_ALPHA_SATURATE:
+        // help us find out what register we can use for the blend-factor
+        // CORRUPTIBLE registers are chosen first, or a new one is allocated.
+        if (fragment.flags & CORRUPTIBLE) {
+            factor.setTo(fragment.reg, 32, CORRUPTIBLE);
+            fragment.flags &= ~CORRUPTIBLE;
+        } else if (fb.flags & CORRUPTIBLE) {
+            factor.setTo(fb.reg, 32, CORRUPTIBLE);
+            fb.flags &= ~CORRUPTIBLE;
+        } else {
+            factor.setTo(scratches.obtain(), 32, CORRUPTIBLE);
+        } 
+        break;
+    }
+
+    // XXX: doesn't work if size==1
+
+    switch(f) {
+    case GGL_ONE_MINUS_DST_COLOR:
+    case GGL_DST_COLOR:
+        factor.s = fb.s;
+        ADD(AL, 0, factor.reg, fb.reg, reg_imm(fb.reg, LSR, fb.s-1));
+        break;
+    case GGL_ONE_MINUS_SRC_COLOR:
+    case GGL_SRC_COLOR:
+        factor.s = fragment.s;
+        ADD(AL, 0, factor.reg, fragment.reg,
+            reg_imm(fragment.reg, LSR, fragment.s-1));
+        break;
+    case GGL_ONE_MINUS_SRC_ALPHA:
+    case GGL_SRC_ALPHA:
+        factor.s = src_alpha.s;
+        ADD(AL, 0, factor.reg, src_alpha.reg,
+                reg_imm(src_alpha.reg, LSR, src_alpha.s-1));
+        break;
+    case GGL_ONE_MINUS_DST_ALPHA:
+    case GGL_DST_ALPHA:
+        // XXX: should be precomputed
+        extract(factor, dst_pixel, GGLFormat::ALPHA);
+        ADD(AL, 0, factor.reg, factor.reg,
+                reg_imm(factor.reg, LSR, factor.s-1));
+        break;
+    case GGL_SRC_ALPHA_SATURATE:
+        // XXX: should be precomputed
+        // XXX: f = min(As, 1-Ad)
+        // btw, we're guaranteed that Ad's size is <= 8, because
+        // it's extracted from the framebuffer
+        break;
+    }
+
+    switch(f) {
+    case GGL_ONE_MINUS_DST_COLOR:
+    case GGL_ONE_MINUS_SRC_COLOR:
+    case GGL_ONE_MINUS_DST_ALPHA:
+    case GGL_ONE_MINUS_SRC_ALPHA:
+        RSB(AL, 0, factor.reg, factor.reg, imm((1<<factor.s)));
+    }
+    
+    // don't need more than 8-bits for the blend factor
+    // and this will prevent overflows in the multiplies later
+    if (factor.s > 8) {
+        MOV(AL, 0, factor.reg, reg_imm(factor.reg, LSR, factor.s-8));
+        factor.s = 8;
+    }
+}
+
+int GGLAssembler::blending_codes(int fs, int fd)
+{
+    int blending = 0;
+    switch(fs) {
+    case GGL_ONE:
+        blending |= BLEND_SRC;
+        break;
+
+    case GGL_ONE_MINUS_DST_COLOR:
+    case GGL_DST_COLOR:
+        blending |= FACTOR_DST|BLEND_SRC;
+        break;
+    case GGL_ONE_MINUS_DST_ALPHA:
+    case GGL_DST_ALPHA:
+        // no need to extract 'component' from the destination
+        // for the blend factor, because we need ALPHA only.
+        blending |= BLEND_SRC;
+        break;
+
+    case GGL_ONE_MINUS_SRC_COLOR:
+    case GGL_SRC_COLOR:    
+        blending |= FACTOR_SRC|BLEND_SRC;
+        break;
+    case GGL_ONE_MINUS_SRC_ALPHA:
+    case GGL_SRC_ALPHA:
+    case GGL_SRC_ALPHA_SATURATE:
+        blending |= FACTOR_SRC|BLEND_SRC;
+        break;
+    }
+    switch(fd) {
+    case GGL_ONE:
+        blending |= BLEND_DST;
+        break;
+
+    case GGL_ONE_MINUS_DST_COLOR:
+    case GGL_DST_COLOR:
+        blending |= FACTOR_DST|BLEND_DST;
+        break;
+    case GGL_ONE_MINUS_DST_ALPHA:
+    case GGL_DST_ALPHA:
+        blending |= FACTOR_DST|BLEND_DST;
+        break;
+
+    case GGL_ONE_MINUS_SRC_COLOR:
+    case GGL_SRC_COLOR:    
+        blending |= FACTOR_SRC|BLEND_DST;
+        break;
+    case GGL_ONE_MINUS_SRC_ALPHA:
+    case GGL_SRC_ALPHA:
+        // no need to extract 'component' from the source
+        // for the blend factor, because we need ALPHA only.
+        blending |= BLEND_DST;
+        break;
+    }
+    return blending;
+}
+
+// ---------------------------------------------------------------------------
+
+void GGLAssembler::build_blendFOneMinusF(
+        component_t& temp,
+        const integer_t& factor, 
+        const integer_t& fragment,
+        const integer_t& fb)
+{
+    //  R = S*f + D*(1-f) = (S-D)*f + D
+    Scratch scratches(registerFile());
+    // compute S-D
+    integer_t diff(fragment.flags & CORRUPTIBLE ?
+            fragment.reg : scratches.obtain(), fb.size(), CORRUPTIBLE);
+    const int shift = fragment.size() - fb.size();
+    if (shift>0)        RSB(AL, 0, diff.reg, fb.reg, reg_imm(fragment.reg, LSR, shift));
+    else if (shift<0)   RSB(AL, 0, diff.reg, fb.reg, reg_imm(fragment.reg, LSL,-shift));
+    else                RSB(AL, 0, diff.reg, fb.reg, fragment.reg);
+    mul_factor_add(temp, diff, factor, component_t(fb));
+}
+
+void GGLAssembler::build_blendOneMinusFF(
+        component_t& temp,
+        const integer_t& factor, 
+        const integer_t& fragment,
+        const integer_t& fb)
+{
+    //  R = S*f + D*(1-f) = (S-D)*f + D
+    Scratch scratches(registerFile());
+    // compute D-S
+    integer_t diff(fb.flags & CORRUPTIBLE ?
+            fb.reg : scratches.obtain(), fb.size(), CORRUPTIBLE);
+    const int shift = fragment.size() - fb.size();
+    if (shift>0)        SUB(AL, 0, diff.reg, fb.reg, reg_imm(fragment.reg, LSR, shift));
+    else if (shift<0)   SUB(AL, 0, diff.reg, fb.reg, reg_imm(fragment.reg, LSL,-shift));
+    else                SUB(AL, 0, diff.reg, fb.reg, fragment.reg);
+    mul_factor_add(temp, diff, factor, component_t(fragment));
+}
+
+// ---------------------------------------------------------------------------
+
+void GGLAssembler::mul_factor(  component_t& d,
+                                const integer_t& v,
+                                const integer_t& f)
+{
+    int vs = v.size();
+    int fs = f.size();
+    int ms = vs+fs;
+
+    // XXX: we could have special cases for 1 bit mul
+
+    // all this code below to use the best multiply instruction
+    // wrt the parameters size. We take advantage of the fact
+    // that the 16-bits multiplies allow a 16-bit shift
+    // The trick is that we just make sure that we have at least 8-bits
+    // per component (which is enough for a 8 bits display).
+
+    int xy;
+    int vshift = 0;
+    int fshift = 0;
+    int smulw = 0;
+
+    if (vs<16) {
+        if (fs<16) {
+            xy = xyBB;
+        } else if (GGL_BETWEEN(fs, 24, 31)) {
+            ms -= 16;
+            xy = xyTB;
+        } else {
+            // eg: 15 * 18  ->  15 * 15
+            fshift = fs - 15;
+            ms -= fshift;
+            xy = xyBB;
+        }
+    } else if (GGL_BETWEEN(vs, 24, 31)) {
+        if (fs<16) {
+            ms -= 16;
+            xy = xyTB;
+        } else if (GGL_BETWEEN(fs, 24, 31)) {
+            ms -= 32;
+            xy = xyTT;
+        } else {
+            // eg: 24 * 18  ->  8 * 18
+            fshift = fs - 15;
+            ms -= 16 + fshift;
+            xy = xyTB;
+        }
+    } else {
+        if (fs<16) {
+            // eg: 18 * 15  ->  15 * 15
+            vshift = vs - 15;
+            ms -= vshift;
+            xy = xyBB;
+        } else if (GGL_BETWEEN(fs, 24, 31)) {
+            // eg: 18 * 24  ->  15 * 8
+            vshift = vs - 15;
+            ms -= 16 + vshift;
+            xy = xyBT;
+        } else {
+            // eg: 18 * 18  ->  (15 * 18)>>16
+            fshift = fs - 15;
+            ms -= 16 + fshift;
+            xy = yB;    //XXX SMULWB
+            smulw = 1;
+        }
+    }
+
+    LOGE_IF(ms>=32, "mul_factor overflow vs=%d, fs=%d", vs, fs);
+
+    int vreg = v.reg;
+    int freg = f.reg;
+    if (vshift) {
+        MOV(AL, 0, d.reg, reg_imm(vreg, LSR, vshift));
+        vreg = d.reg;
+    }
+    if (fshift) {
+        MOV(AL, 0, d.reg, reg_imm(vreg, LSR, fshift));
+        freg = d.reg;
+    }
+    if (smulw)  SMULW(AL, xy, d.reg, vreg, freg);
+    else        SMUL(AL, xy, d.reg, vreg, freg);
+
+
+    d.h = ms;
+    if (mDithering) {
+        d.l = 0; 
+    } else {
+        d.l = fs; 
+        d.flags |= CLEAR_LO;
+    }
+}
+
+void GGLAssembler::mul_factor_add(  component_t& d,
+                                    const integer_t& v,
+                                    const integer_t& f,
+                                    const component_t& a)
+{
+    // XXX: we could have special cases for 1 bit mul
+    Scratch scratches(registerFile());
+
+    int vs = v.size();
+    int fs = f.size();
+    int as = a.h;
+    int ms = vs+fs;
+
+    LOGE_IF(ms>=32, "mul_factor_add overflow vs=%d, fs=%d, as=%d", vs, fs, as);
+
+    integer_t add(a.reg, a.h, a.flags);
+
+    // 'a' is a component_t but it is guaranteed to have
+    // its high bits set to 0. However in the dithering case,
+    // we can't get away with truncating the potentially bad bits
+    // so extraction is needed.
+
+   if ((mDithering) && (a.size() < ms)) {
+        // we need to expand a
+        if (!(a.flags & CORRUPTIBLE)) {
+            // ... but it's not corruptible, so we need to pick a
+            // temporary register.
+            // Try to uses the destination register first (it's likely
+            // to be usable, unless it aliases an input).
+            if (d.reg!=a.reg && d.reg!=v.reg && d.reg!=f.reg) {
+                add.reg = d.reg;
+            } else {
+                add.reg = scratches.obtain();
+            }
+        }
+        expand(add, a, ms); // extracts and expands
+        as = ms;
+    }
+
+    if (ms == as) {
+        if (vs<16 && fs<16) SMLABB(AL, d.reg, v.reg, f.reg, add.reg);
+        else                MLA(AL, 0, d.reg, v.reg, f.reg, add.reg);
+    } else {
+        int temp = d.reg;
+        if (temp == add.reg) {
+            // the mul will modify add.reg, we need an intermediary reg
+            if (v.flags & CORRUPTIBLE)      temp = v.reg;
+            else if (f.flags & CORRUPTIBLE) temp = f.reg;
+            else                            temp = scratches.obtain();
+        }
+
+        if (vs<16 && fs<16) SMULBB(AL, temp, v.reg, f.reg);
+        else                MUL(AL, 0, temp, v.reg, f.reg);
+
+        if (ms>as) {
+            ADD(AL, 0, d.reg, temp, reg_imm(add.reg, LSL, ms-as));
+        } else if (ms<as) {
+            // not sure if we should expand the mul instead?
+            ADD(AL, 0, d.reg, temp, reg_imm(add.reg, LSR, as-ms));
+        }
+    }
+
+    d.h = ms;
+    if (mDithering) {
+        d.l = a.l; 
+    } else {
+        d.l = fs>a.l ? fs : a.l;
+        d.flags |= CLEAR_LO;
+    }
+}
+
+void GGLAssembler::component_add(component_t& d,
+        const integer_t& dst, const integer_t& src)
+{
+    // here we're guaranteed that fragment.size() >= fb.size()
+    const int shift = src.size() - dst.size();
+    if (!shift) {
+        ADD(AL, 0, d.reg, src.reg, dst.reg);
+    } else {
+        ADD(AL, 0, d.reg, src.reg, reg_imm(dst.reg, LSL, shift));
+    }
+
+    d.h = src.size();
+    if (mDithering) {
+        d.l = 0;
+    } else {
+        d.l = shift;
+        d.flags |= CLEAR_LO;
+    }
+}
+
+void GGLAssembler::component_sat(const component_t& v)
+{
+    const int one = ((1<<v.size())-1)<<v.l;
+    CMP(AL, v.reg, imm( 1<<v.h ));
+    if (isValidImmediate(one)) {
+        MOV(HS, 0, v.reg, imm( one ));
+    } else if (isValidImmediate(~one)) {
+        MVN(HS, 0, v.reg, imm( ~one ));
+    } else {
+        MOV(HS, 0, v.reg, imm( 1<<v.h ));
+        SUB(HS, 0, v.reg, v.reg, imm( 1<<v.l ));
+    }
+}
+
+// ----------------------------------------------------------------------------
+
+}; // namespace android
+