blob: 7d14e3fdfa878623d03724128ca609b17621a558 [file] [log] [blame]
/*
* Android "Almost" C Compiler.
* This is a compiler for a small subset of the C language, intended for use
* in scripting environments where speed and memory footprint are important.
*
* This code is based upon the "unobfuscated" version of the
* Obfuscated Tiny C compiler, see the file LICENSE for details.
*
*/
#include <ctype.h>
#include <dlfcn.h>
#include <errno.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cutils/hashmap.h>
#if defined(__i386__)
#include <sys/mman.h>
#endif
#if defined(__arm__)
#include <unistd.h>
#endif
#if defined(__arm__)
#define DEFAULT_ARM_CODEGEN
#define PROVIDE_ARM_CODEGEN
#elif defined(__i386__)
#define DEFAULT_X86_CODEGEN
#define PROVIDE_X86_CODEGEN
#elif defined(__x86_64__)
#define DEFAULT_X64_CODEGEN
#define PROVIDE_X64_CODEGEN
#endif
#ifdef PROVIDE_ARM_CODEGEN
#include "disassem.h"
#endif
#include <acc/acc.h>
#define LOG_API(...) do {} while(0)
// #define LOG_API(...) fprintf (stderr, __VA_ARGS__)
// #define ENABLE_ARM_DISASSEMBLY
// #define PROVIDE_TRACE_CODEGEN
namespace acc {
class ErrorSink {
public:
void error(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
verror(fmt, ap);
va_end(ap);
}
virtual void verror(const char* fmt, va_list ap) = 0;
};
class Compiler : public ErrorSink {
class CodeBuf {
char* ind; // Output code pointer
char* pProgramBase;
ErrorSink* mErrorSink;
int mSize;
bool mOverflowed;
void release() {
if (pProgramBase != 0) {
free(pProgramBase);
pProgramBase = 0;
}
}
bool check(int n) {
int newSize = ind - pProgramBase + n;
bool overflow = newSize > mSize;
if (overflow && !mOverflowed) {
mOverflowed = true;
if (mErrorSink) {
mErrorSink->error("Code too large: %d bytes", newSize);
}
}
return overflow;
}
public:
CodeBuf() {
pProgramBase = 0;
ind = 0;
mErrorSink = 0;
mSize = 0;
mOverflowed = false;
}
~CodeBuf() {
release();
}
void init(int size) {
release();
mSize = size;
pProgramBase = (char*) calloc(1, size);
ind = pProgramBase;
}
void setErrorSink(ErrorSink* pErrorSink) {
mErrorSink = pErrorSink;
}
int o4(int n) {
if(check(4)) {
return 0;
}
intptr_t result = (intptr_t) ind;
* (int*) ind = n;
ind += 4;
return result;
}
/*
* Output a byte. Handles all values, 0..ff.
*/
void ob(int n) {
if(check(1)) {
return;
}
*ind++ = n;
}
inline void* getBase() {
return (void*) pProgramBase;
}
intptr_t getSize() {
return ind - pProgramBase;
}
intptr_t getPC() {
return (intptr_t) ind;
}
};
/**
* A code generator creates an in-memory program, generating the code on
* the fly. There is one code generator implementation for each supported
* architecture.
*
* The code generator implements the following abstract machine:
* R0 - the main accumulator.
* R1 - the secondary accumulator.
* FP - a frame pointer for accessing function arguments and local
* variables.
* SP - a stack pointer for storing intermediate results while evaluating
* expressions. The stack pointer grows downwards.
*
* The function calling convention is that all arguments are placed on the
* stack such that the first argument has the lowest address.
* After the call, the result is in R0. The caller is responsible for
* removing the arguments from the stack.
* The R0 and R1 registers are not saved across function calls. The
* FP and SP registers are saved.
*/
class CodeGenerator {
public:
CodeGenerator() {
mErrorSink = 0;
pCodeBuf = 0;
}
virtual ~CodeGenerator() {}
virtual void init(CodeBuf* pCodeBuf) {
this->pCodeBuf = pCodeBuf;
pCodeBuf->setErrorSink(mErrorSink);
}
virtual void setErrorSink(ErrorSink* pErrorSink) {
mErrorSink = pErrorSink;
if (pCodeBuf) {
pCodeBuf->setErrorSink(mErrorSink);
}
}
/* Emit a function prolog.
* argCount is the number of arguments.
* Save the old value of the FP.
* Set the new value of the FP.
* Convert from the native platform calling convention to
* our stack-based calling convention. This may require
* pushing arguments from registers to the stack.
* Allocate "N" bytes of stack space. N isn't known yet, so
* just emit the instructions for adjusting the stack, and return
* the address to patch up. The patching will be done in
* functionExit().
* returns address to patch with local variable size.
*/
virtual int functionEntry(int argCount) = 0;
/* Emit a function epilog.
* Restore the old SP and FP register values.
* Return to the calling function.
* argCount - the number of arguments to the function.
* localVariableAddress - returned from functionEntry()
* localVariableSize - the size in bytes of the local variables.
*/
virtual void functionExit(int argCount, int localVariableAddress,
int localVariableSize) = 0;
/* load immediate value to R0 */
virtual void li(int t) = 0;
/* Jump to a target, and return the address of the word that
* holds the target data, in case it needs to be fixed up later.
*/
virtual int gjmp(int t) = 0;
/* Test R0 and jump to a target if the test succeeds.
* l = 0: je, l == 1: jne
* Return the address of the word that holds the targed data, in
* case it needs to be fixed up later.
*/
virtual int gtst(bool l, int t) = 0;
/* Compare R1 against R0, and store the boolean result in R0.
* op specifies the comparison.
*/
virtual void gcmp(int op) = 0;
/* Perform the arithmetic op specified by op. R1 is the
* left argument, R0 is the right argument.
*/
virtual void genOp(int op) = 0;
/* Set R1 to 0.
*/
virtual void clearR1() = 0;
/* Push R0 onto the stack.
*/
virtual void pushR0() = 0;
/* Pop R1 off of the stack.
*/
virtual void popR1() = 0;
/* Store R0 to the address stored in R1.
* isInt is true if a whole 4-byte integer value
* should be stored, otherwise a 1-byte character
* value should be stored.
*/
virtual void storeR0ToR1(bool isInt) = 0;
/* Load R0 from the address stored in R0.
* isInt is true if a whole 4-byte integer value
* should be loaded, otherwise a 1-byte character
* value should be loaded.
*/
virtual void loadR0FromR0(bool isInt) = 0;
/* Load the absolute address of a variable to R0.
* If ea <= LOCAL, then this is a local variable, or an
* argument, addressed relative to FP.
* else it is an absolute global address.
*/
virtual void leaR0(int ea) = 0;
/* Store R0 to a variable.
* If ea <= LOCAL, then this is a local variable, or an
* argument, addressed relative to FP.
* else it is an absolute global address.
*/
virtual void storeR0(int ea) = 0;
/* load R0 from a variable.
* If ea <= LOCAL, then this is a local variable, or an
* argument, addressed relative to FP.
* else it is an absolute global address.
* If isIncDec is true, then the stored variable's value
* should be post-incremented or post-decremented, based
* on the value of op.
*/
virtual void loadR0(int ea, bool isIncDec, int op) = 0;
/* Emit code to adjust the stack for a function call. Return the
* label for the address of the instruction that adjusts the
* stack size. This will be passed as argument "a" to
* endFunctionCallArguments.
*/
virtual int beginFunctionCallArguments() = 0;
/* Emit code to store R0 to the stack at byte offset l.
*/
virtual void storeR0ToArg(int l) = 0;
/* Patch the function call preamble.
* a is the address returned from beginFunctionCallArguments
* l is the number of bytes the arguments took on the stack.
* Typically you would also emit code to convert the argument
* list into whatever the native function calling convention is.
* On ARM for example you would pop the first 5 arguments into
* R0..R4
*/
virtual void endFunctionCallArguments(int a, int l) = 0;
/* Emit a call to an unknown function. The argument "symbol" needs to
* be stored in the location where the address should go. It forms
* a chain. The address will be patched later.
* Return the address of the word that has to be patched.
*/
virtual int callForward(int symbol) = 0;
/* Call a function using PC-relative addressing. t is the PC-relative
* address of the function. It has already been adjusted for the
* architectural jump offset, so just store it as-is.
*/
virtual void callRelative(int t) = 0;
/* Call a function pointer. L is the number of bytes the arguments
* take on the stack. The address of the function is stored at
* location SP + l.
*/
virtual void callIndirect(int l) = 0;
/* Adjust SP after returning from a function call. l is the
* number of bytes of arguments stored on the stack. isIndirect
* is true if this was an indirect call. (In which case the
* address of the function is stored at location SP + l.)
*/
virtual void adjustStackAfterCall(int l, bool isIndirect) = 0;
/* Print a disassembly of the assembled code to out. Return
* non-zero if there is an error.
*/
virtual int disassemble(FILE* out) = 0;
/* Generate a symbol at the current PC. t is the head of a
* linked list of addresses to patch.
*/
virtual void gsym(int t) = 0;
/*
* Do any cleanup work required at the end of a compile.
* For example, an instruction cache might need to be
* invalidated.
* Return non-zero if there is an error.
*/
virtual int finishCompile() = 0;
/**
* Adjust relative branches by this amount.
*/
virtual int jumpOffset() = 0;
protected:
/*
* Output a byte. Handles all values, 0..ff.
*/
void ob(int n) {
pCodeBuf->ob(n);
}
intptr_t o4(int data) {
return pCodeBuf->o4(data);
}
intptr_t getBase() {
return (intptr_t) pCodeBuf->getBase();
}
intptr_t getPC() {
return pCodeBuf->getPC();
}
intptr_t getSize() {
return pCodeBuf->getSize();
}
void error(const char* fmt,...) {
va_list ap;
va_start(ap, fmt);
mErrorSink->verror(fmt, ap);
va_end(ap);
}
private:
CodeBuf* pCodeBuf;
ErrorSink* mErrorSink;
};
#ifdef PROVIDE_ARM_CODEGEN
class ARMCodeGenerator : public CodeGenerator {
public:
ARMCodeGenerator() {}
virtual ~ARMCodeGenerator() {}
/* returns address to patch with local variable size
*/
virtual int functionEntry(int argCount) {
LOG_API("functionEntry(%d);\n", argCount);
// sp -> arg4 arg5 ...
// Push our register-based arguments back on the stack
if (argCount > 0) {
int regArgCount = argCount <= 4 ? argCount : 4;
o4(0xE92D0000 | ((1 << argCount) - 1)); // stmfd sp!, {}
}
// sp -> arg0 arg1 ...
o4(0xE92D4800); // stmfd sp!, {fp, lr}
// sp, fp -> oldfp, retadr, arg0 arg1 ....
o4(0xE1A0B00D); // mov fp, sp
return o4(0xE24DD000); // sub sp, sp, # <local variables>
}
virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) {
LOG_API("functionExit(%d, %d, %d);\n", argCount, localVariableAddress, localVariableSize);
// Patch local variable allocation code:
if (localVariableSize < 0 || localVariableSize > 255) {
error("localVariables out of range: %d", localVariableSize);
}
*(char*) (localVariableAddress) = localVariableSize;
// sp -> locals .... fp -> oldfp, retadr, arg0, arg1, ...
o4(0xE1A0E00B); // mov lr, fp
o4(0xE59BB000); // ldr fp, [fp]
o4(0xE28ED004); // add sp, lr, #4
// sp -> retadr, arg0, ...
o4(0xE8BD4000); // ldmfd sp!, {lr}
// sp -> arg0 ....
if (argCount > 0) {
// We store the PC into the lr so we can adjust the sp before
// returning. We need to pull off the registers we pushed
// earlier. We don't need to actually store them anywhere,
// just adjust the stack.
int regArgCount = argCount <= 4 ? argCount : 4;
o4(0xE28DD000 | (regArgCount << 2)); // add sp, sp, #argCount << 2
}
o4(0xE12FFF1E); // bx lr
}
/* load immediate value */
virtual void li(int t) {
LOG_API("li(%d);\n", t);
if (t >= 0 && t < 255) {
o4(0xE3A00000 + t); // mov r0, #0
} else if (t >= -256 && t < 0) {
// mvn means move constant ^ ~0
o4(0xE3E00001 - t); // mvn r0, #0
} else {
o4(0xE51F0000); // ldr r0, .L3
o4(0xEA000000); // b .L99
o4(t); // .L3: .word 0
// .L99:
}
}
virtual int gjmp(int t) {
LOG_API("gjmp(%d);\n", t);
return o4(0xEA000000 | encodeAddress(t)); // b .L33
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
LOG_API("gtst(%d, %d);\n", l, t);
o4(0xE3500000); // cmp r0,#0
int branch = l ? 0x1A000000 : 0x0A000000; // bne : beq
return o4(branch | encodeAddress(t));
}
virtual void gcmp(int op) {
LOG_API("gcmp(%d);\n", op);
o4(0xE1510000); // cmp r1, r1
switch(op) {
case OP_EQUALS:
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
break;
case OP_NOT_EQUALS:
o4(0x03A00000); // moveq r0,#0
o4(0x13A00001); // movne r0,#1
break;
case OP_LESS_EQUAL:
o4(0xD3A00001); // movle r0,#1
o4(0xC3A00000); // movgt r0,#0
break;
case OP_GREATER:
o4(0xD3A00000); // movle r0,#0
o4(0xC3A00001); // movgt r0,#1
break;
case OP_GREATER_EQUAL:
o4(0xA3A00001); // movge r0,#1
o4(0xB3A00000); // movlt r0,#0
break;
case OP_LESS:
o4(0xA3A00000); // movge r0,#0
o4(0xB3A00001); // movlt r0,#1
break;
default:
error("Unknown comparison op %d", op);
break;
}
}
virtual void genOp(int op) {
LOG_API("genOp(%d);\n", op);
switch(op) {
case OP_MUL:
o4(0x0E0000091); // mul r0,r1,r0
break;
case OP_DIV:
callRuntime(runtime_DIV);
break;
case OP_MOD:
callRuntime(runtime_MOD);
break;
case OP_PLUS:
o4(0xE0810000); // add r0,r1,r0
break;
case OP_MINUS:
o4(0xE0410000); // sub r0,r1,r0
break;
case OP_SHIFT_LEFT:
o4(0xE1A00011); // lsl r0,r1,r0
break;
case OP_SHIFT_RIGHT:
o4(0xE1A00051); // asr r0,r1,r0
break;
case OP_BIT_AND:
o4(0xE0010000); // and r0,r1,r0
break;
case OP_BIT_XOR:
o4(0xE0210000); // eor r0,r1,r0
break;
case OP_BIT_OR:
o4(0xE1810000); // orr r0,r1,r0
break;
case OP_BIT_NOT:
o4(0xE1E00000); // mvn r0, r0
break;
default:
error("Unimplemented op %d\n", op);
break;
}
#if 0
o(decodeOp(op));
if (op == OP_MOD)
o(0x92); /* xchg %edx, %eax */
#endif
}
virtual void clearR1() {
LOG_API("clearR1();\n");
o4(0xE3A01000); // mov r1, #0
}
virtual void pushR0() {
LOG_API("pushR0();\n");
o4(0xE92D0001); // stmfd sp!,{r0}
}
virtual void popR1() {
LOG_API("popR1();\n");
o4(0xE8BD0002); // ldmfd sp!,{r1}
}
virtual void storeR0ToR1(bool isInt) {
LOG_API("storeR0ToR1(%d);\n", isInt);
if (isInt) {
o4(0xE5810000); // str r0, [r1]
} else {
o4(0xE5C10000); // strb r0, [r1]
}
}
virtual void loadR0FromR0(bool isInt) {
LOG_API("loadR0FromR0(%d);\n", isInt);
if (isInt)
o4(0xE5900000); // ldr r0, [r0]
else
o4(0xE5D00000); // ldrb r0, [r0]
}
virtual void leaR0(int ea) {
LOG_API("leaR0(%d);\n", ea);
if (ea < LOCAL) {
// Local, fp relative
if (ea < -1023 || ea > 1023 || ((ea & 3) != 0)) {
error("Offset out of range: %08x", ea);
}
if (ea < 0) {
o4(0xE24B0F00 | (0xff & ((-ea) >> 2))); // sub r0, fp, #ea
} else {
o4(0xE28B0F00 | (0xff & (ea >> 2))); // add r0, fp, #ea
}
} else {
// Global, absolute.
o4(0xE59F0000); // ldr r0, .L1
o4(0xEA000000); // b .L99
o4(ea); // .L1: .word 0
// .L99:
}
}
virtual void storeR0(int ea) {
LOG_API("storeR0(%d);\n", ea);
if (ea < LOCAL) {
// Local, fp relative
if (ea < -4095 || ea > 4095) {
error("Offset out of range: %08x", ea);
}
if (ea < 0) {
o4(0xE50B0000 | (0xfff & (-ea))); // str r0, [fp,#-ea]
} else {
o4(0xE58B0000 | (0xfff & ea)); // str r0, [fp,#ea]
}
} else{
// Global, absolute
o4(0xE59F1000); // ldr r1, .L1
o4(0xEA000000); // b .L99
o4(ea); // .L1: .word 0
o4(0xE5810000); // .L99: str r0, [r1]
}
}
virtual void loadR0(int ea, bool isIncDec, int op) {
LOG_API("loadR0(%d, %d, %d);\n", ea, isIncDec, op);
if (ea < LOCAL) {
// Local, fp relative
if (ea < -4095 || ea > 4095) {
error("Offset out of range: %08x", ea);
}
if (ea < 0) {
o4(0xE51B0000 | (0xfff & (-ea))); // ldr r0, [fp,#-ea]
} else {
o4(0xE59B0000 | (0xfff & ea)); // ldr r0, [fp,#ea]
}
} else {
// Global, absolute
o4(0xE59F2000); // ldr r2, .L1
o4(0xEA000000); // b .L99
o4(ea); // .L1: .word ea
o4(0xE5920000); // .L99: ldr r0, [r2]
}
if (isIncDec) {
switch (op) {
case OP_INCREMENT:
o4(0xE2801001); // add r1, r0, #1
break;
case OP_DECREMENT:
o4(0xE2401001); // sub r1, r0, #1
break;
default:
error("unknown opcode: %d", op);
}
if (ea < LOCAL) {
// Local, fp relative
// Don't need range check, was already checked above
if (ea < 0) {
o4(0xE50B1000 | (0xfff & (-ea))); // str r1, [fp,#-ea]
} else {
o4(0xE58B1000 | (0xfff & ea)); // str r1, [fp,#ea]
}
} else{
// Global, absolute
// r2 is already set up from before.
o4(0xE5821000); // str r1, [r2]
}
}
}
virtual int beginFunctionCallArguments() {
LOG_API("beginFunctionCallArguments();\n");
return o4(0xE24DDF00); // Placeholder
}
virtual void storeR0ToArg(int l) {
LOG_API("storeR0ToArg(%d);\n", l);
if (l < 0 || l > 4096-4) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE58D0000 + l); // str r0, [sp, #4]
}
virtual void endFunctionCallArguments(int a, int l) {
LOG_API("endFunctionCallArguments(0x%08x, %d);\n", a, l);
if (l < 0 || l > 0x3FC) {
error("L out of range for stack adjustment: 0x%08x", l);
}
* (int*) a = 0xE24DDF00 | (l >> 2); // sub sp, sp, #0 << 2
int argCount = l >> 2;
if (argCount > 0) {
int regArgCount = argCount > 4 ? 4 : argCount;
o4(0xE8BD0000 | ((1 << regArgCount) - 1)); // ldmfd sp!,{}
}
}
virtual int callForward(int symbol) {
LOG_API("callForward(%d);\n", symbol);
// Forward calls are always short (local)
return o4(0xEB000000 | encodeAddress(symbol));
}
virtual void callRelative(int t) {
LOG_API("callRelative(%d);\n", t);
int abs = t + getPC() + jumpOffset();
LOG_API("abs=%d (0x%08x)\n", abs, abs);
if (t >= - (1 << 25) && t < (1 << 25)) {
o4(0xEB000000 | encodeAddress(t));
} else {
// Long call.
o4(0xE59FC000); // ldr r12, .L1
o4(0xEA000000); // b .L99
o4(t - 12); // .L1: .word 0
o4(0xE08CC00F); // .L99: add r12,pc
o4(0xE12FFF3C); // blx r12
}
}
virtual void callIndirect(int l) {
LOG_API("callIndirect(%d);\n", l);
int argCount = l >> 2;
int poppedArgs = argCount > 4 ? 4 : argCount;
int adjustedL = l - (poppedArgs << 2);
if (adjustedL < 0 || adjustedL > 4096-4) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE59DC000 | (0xfff & adjustedL)); // ldr r12, [sp,#adjustedL]
o4(0xE12FFF3C); // blx r12
}
virtual void adjustStackAfterCall(int l, bool isIndirect) {
LOG_API("adjustStackAfterCall(%d, %d);\n", l, isIndirect);
int argCount = l >> 2;
int stackArgs = argCount > 4 ? argCount - 4 : 0;
int stackUse = stackArgs + (isIndirect ? 1 : 0);
if (stackUse) {
if (stackUse < 0 || stackUse > 255) {
error("L out of range for stack adjustment: 0x%08x", l);
}
o4(0xE28DDF00 | stackUse); // add sp, sp, #stackUse << 2
}
}
virtual int jumpOffset() {
return 8;
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
LOG_API("gsym(0x%x)\n", t);
int n;
int base = getBase();
int pc = getPC();
LOG_API("pc = 0x%x\n", pc);
while (t) {
int data = * (int*) t;
int decodedOffset = ((BRANCH_REL_ADDRESS_MASK & data) << 2);
if (decodedOffset == 0) {
n = 0;
} else {
n = base + decodedOffset; /* next value */
}
*(int *) t = (data & ~BRANCH_REL_ADDRESS_MASK)
| encodeRelAddress(pc - t - 8);
t = n;
}
}
virtual int finishCompile() {
#if defined(__arm__)
const long base = long(getBase());
const long curr = long(getPC());
int err = cacheflush(base, curr, 0);
return err;
#else
return 0;
#endif
}
virtual int disassemble(FILE* out) {
#ifdef ENABLE_ARM_DISASSEMBLY
disasmOut = out;
disasm_interface_t di;
di.di_readword = disassemble_readword;
di.di_printaddr = disassemble_printaddr;
di.di_printf = disassemble_printf;
int base = getBase();
int pc = getPC();
for(int i = base; i < pc; i += 4) {
fprintf(out, "%08x: %08x ", i, *(int*) i);
::disasm(&di, i, 0);
}
#endif
return 0;
}
private:
static FILE* disasmOut;
static u_int
disassemble_readword(u_int address)
{
return(*((u_int *)address));
}
static void
disassemble_printaddr(u_int address)
{
fprintf(disasmOut, "0x%08x", address);
}
static void
disassemble_printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vfprintf(disasmOut, fmt, ap);
va_end(ap);
}
static const int BRANCH_REL_ADDRESS_MASK = 0x00ffffff;
/** Encode a relative address that might also be
* a label.
*/
int encodeAddress(int value) {
int base = getBase();
if (value >= base && value <= getPC() ) {
// This is a label, encode it relative to the base.
value = value - base;
}
return encodeRelAddress(value);
}
int encodeRelAddress(int value) {
return BRANCH_REL_ADDRESS_MASK & (value >> 2);
}
typedef int (*int2FnPtr)(int a, int b);
void callRuntime(int2FnPtr fn) {
o4(0xE59F2000); // ldr r2, .L1
o4(0xEA000000); // b .L99
o4((int) fn); //.L1: .word fn
o4(0xE12FFF32); //.L99: blx r2
}
static int runtime_DIV(int a, int b) {
return b / a;
}
static int runtime_MOD(int a, int b) {
return b % a;
}
};
#endif // PROVIDE_ARM_CODEGEN
#ifdef PROVIDE_X86_CODEGEN
class X86CodeGenerator : public CodeGenerator {
public:
X86CodeGenerator() {}
virtual ~X86CodeGenerator() {}
/* returns address to patch with local variable size
*/
virtual int functionEntry(int argCount) {
o(0xe58955); /* push %ebp, mov %esp, %ebp */
return oad(0xec81, 0); /* sub $xxx, %esp */
}
virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) {
o(0xc3c9); /* leave, ret */
*(int *) localVariableAddress = localVariableSize; /* save local variables */
}
/* load immediate value */
virtual void li(int t) {
oad(0xb8, t); /* mov $xx, %eax */
}
virtual int gjmp(int t) {
return psym(0xe9, t);
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
o(0x0fc085); /* test %eax, %eax, je/jne xxx */
return psym(0x84 + l, t);
}
virtual void gcmp(int op) {
int t = decodeOp(op);
o(0xc139); /* cmp %eax,%ecx */
li(0);
o(0x0f); /* setxx %al */
o(t + 0x90);
o(0xc0);
}
virtual void genOp(int op) {
o(decodeOp(op));
if (op == OP_MOD)
o(0x92); /* xchg %edx, %eax */
}
virtual void clearR1() {
oad(0xb9, 0); /* movl $0, %ecx */
}
virtual void pushR0() {
o(0x50); /* push %eax */
}
virtual void popR1() {
o(0x59); /* pop %ecx */
}
virtual void storeR0ToR1(bool isInt) {
o(0x0188 + isInt); /* movl %eax/%al, (%ecx) */
}
virtual void loadR0FromR0(bool isInt) {
if (isInt)
o(0x8b); /* mov (%eax), %eax */
else
o(0xbe0f); /* movsbl (%eax), %eax */
ob(0); /* add zero in code */
}
virtual void leaR0(int ea) {
gmov(10, ea); /* leal EA, %eax */
}
virtual void storeR0(int ea) {
gmov(6, ea); /* mov %eax, EA */
}
virtual void loadR0(int ea, bool isIncDec, int op) {
gmov(8, ea); /* mov EA, %eax */
if (isIncDec) {
/* Implement post-increment or post decrement.
*/
gmov(0, ea); /* 83 ADD */
o(decodeOp(op));
}
}
virtual int beginFunctionCallArguments() {
return oad(0xec81, 0); /* sub $xxx, %esp */
}
virtual void storeR0ToArg(int l) {
oad(0x248489, l); /* movl %eax, xxx(%esp) */
}
virtual void endFunctionCallArguments(int a, int l) {
* (int*) a = l;
}
virtual int callForward(int symbol) {
return psym(0xe8, symbol); /* call xxx */
}
virtual void callRelative(int t) {
psym(0xe8, t); /* call xxx */
}
virtual void callIndirect(int l) {
oad(0x2494ff, l); /* call *xxx(%esp) */
}
virtual void adjustStackAfterCall(int l, bool isIndirect) {
if (isIndirect) {
l += 4;
}
oad(0xc481, l); /* add $xxx, %esp */
}
virtual int jumpOffset() {
return 5;
}
virtual int disassemble(FILE* out) {
return 0;
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
int n;
int pc = getPC();
while (t) {
n = *(int *) t; /* next value */
*(int *) t = pc - t - 4;
t = n;
}
}
virtual int finishCompile() {
size_t pagesize = 4096;
size_t base = (size_t) getBase() & ~ (pagesize - 1);
size_t top = ((size_t) getPC() + pagesize - 1) & ~ (pagesize - 1);
int err = mprotect((void*) base, top - base, PROT_READ | PROT_WRITE | PROT_EXEC);
if (err) {
error("mprotect() failed: %d", errno);
}
return err;
}
private:
/** Output 1 to 4 bytes.
*
*/
void o(int n) {
/* cannot use unsigned, so we must do a hack */
while (n && n != -1) {
ob(n & 0xff);
n = n >> 8;
}
}
/* psym is used to put an instruction with a data field which is a
reference to a symbol. It is in fact the same as oad ! */
int psym(int n, int t) {
return oad(n, t);
}
/* instruction + address */
int oad(int n, int t) {
o(n);
int result = getPC();
o4(t);
return result;
}
static const int operatorHelper[];
int decodeOp(int op) {
if (op < 0 || op > OP_COUNT) {
error("Out-of-range operator: %d\n", op);
op = 0;
}
return operatorHelper[op];
}
void gmov(int l, int t) {
o(l + 0x83);
oad((t > -LOCAL && t < LOCAL) << 7 | 5, t);
}
};
#endif // PROVIDE_X86_CODEGEN
#ifdef PROVIDE_TRACE_CODEGEN
class TraceCodeGenerator : public CodeGenerator {
private:
CodeGenerator* mpBase;
public:
TraceCodeGenerator(CodeGenerator* pBase) {
mpBase = pBase;
}
virtual ~TraceCodeGenerator() {
delete mpBase;
}
virtual void init(CodeBuf* pCodeBuf) {
mpBase->init(pCodeBuf);
}
void setErrorSink(ErrorSink* pErrorSink) {
mpBase->setErrorSink(pErrorSink);
}
/* returns address to patch with local variable size
*/
virtual int functionEntry(int argCount) {
int result = mpBase->functionEntry(argCount);
fprintf(stderr, "functionEntry(%d) -> %d\n", argCount, result);
return result;
}
virtual void functionExit(int argCount, int localVariableAddress, int localVariableSize) {
fprintf(stderr, "functionExit(%d, %d, %d)\n",
argCount, localVariableAddress, localVariableSize);
mpBase->functionExit(argCount, localVariableAddress, localVariableSize);
}
/* load immediate value */
virtual void li(int t) {
fprintf(stderr, "li(%d)\n", t);
mpBase->li(t);
}
virtual int gjmp(int t) {
int result = mpBase->gjmp(t);
fprintf(stderr, "gjmp(%d) = %d\n", t, result);
return result;
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
int result = mpBase->gtst(l, t);
fprintf(stderr, "gtst(%d,%d) = %d\n", l, t, result);
return result;
}
virtual void gcmp(int op) {
fprintf(stderr, "gcmp(%d)\n", op);
mpBase->gcmp(op);
}
virtual void genOp(int op) {
fprintf(stderr, "genOp(%d)\n", op);
mpBase->genOp(op);
}
virtual void clearR1() {
fprintf(stderr, "clearR1()\n");
mpBase->clearR1();
}
virtual void pushR0() {
fprintf(stderr, "pushR0()\n");
mpBase->pushR0();
}
virtual void popR1() {
fprintf(stderr, "popR1()\n");
mpBase->popR1();
}
virtual void storeR0ToR1(bool isInt) {
fprintf(stderr, "storeR0ToR1(%d)\n", isInt);
mpBase->storeR0ToR1(isInt);
}
virtual void loadR0FromR0(bool isInt) {
fprintf(stderr, "loadR0FromR0(%d)\n", isInt);
mpBase->loadR0FromR0(isInt);
}
virtual void leaR0(int ea) {
fprintf(stderr, "leaR0(%d)\n", ea);
mpBase->leaR0(ea);
}
virtual void storeR0(int ea) {
fprintf(stderr, "storeR0(%d)\n", ea);
mpBase->storeR0(ea);
}
virtual void loadR0(int ea, bool isIncDec, int op) {
fprintf(stderr, "loadR0(%d, %d, %d)\n", ea, isIncDec, op);
mpBase->loadR0(ea, isIncDec, op);
}
virtual int beginFunctionCallArguments() {
int result = mpBase->beginFunctionCallArguments();
fprintf(stderr, "beginFunctionCallArguments() = %d\n", result);
return result;
}
virtual void storeR0ToArg(int l) {
fprintf(stderr, "storeR0ToArg(%d)\n", l);
mpBase->storeR0ToArg(l);
}
virtual void endFunctionCallArguments(int a, int l) {
fprintf(stderr, "endFunctionCallArguments(%d, %d)\n", a, l);
mpBase->endFunctionCallArguments(a, l);
}
virtual int callForward(int symbol) {
int result = mpBase->callForward(symbol);
fprintf(stderr, "callForward(%d) = %d\n", symbol, result);
return result;
}
virtual void callRelative(int t) {
fprintf(stderr, "callRelative(%d)\n", t);
mpBase->callRelative(t);
}
virtual void callIndirect(int l) {
fprintf(stderr, "callIndirect(%d)\n", l);
mpBase->callIndirect(l);
}
virtual void adjustStackAfterCall(int l, bool isIndirect) {
fprintf(stderr, "adjustStackAfterCall(%d, %d)\n", l, isIndirect);
mpBase->adjustStackAfterCall(l, isIndirect);
}
virtual int jumpOffset() {
return mpBase->jumpOffset();
}
virtual int disassemble(FILE* out) {
return mpBase->disassemble(out);
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
fprintf(stderr, "gsym(%d)\n", t);
mpBase->gsym(t);
}
virtual int finishCompile() {
int result = mpBase->finishCompile();
fprintf(stderr, "finishCompile() = %d\n", result);
return result;
}
};
#endif // PROVIDE_TRACE_CODEGEN
class InputStream {
public:
int getChar() {
if (bumpLine) {
line++;
bumpLine = false;
}
int ch = get();
if (ch == '\n') {
bumpLine = true;
}
return ch;
}
int getLine() {
return line;
}
protected:
InputStream() :
line(1), bumpLine(false) {
}
private:
virtual int get() = 0;
int line;
bool bumpLine;
};
class FileInputStream : public InputStream {
public:
FileInputStream(FILE* in) : f(in) {}
private:
virtual int get() { return fgetc(f); }
FILE* f;
};
class TextInputStream : public InputStream {
public:
TextInputStream(const char* text, size_t textLength)
: pText(text), mTextLength(textLength), mPosition(0) {
}
private:
virtual int get() {
return mPosition < mTextLength ? pText[mPosition++] : EOF;
}
const char* pText;
size_t mTextLength;
size_t mPosition;
};
class String {
public:
String() {
mpBase = 0;
mUsed = 0;
mSize = 0;
}
String(const char* item, int len, bool adopt) {
if (len < 0) {
len = strlen(item);
}
if (adopt) {
mpBase = (char*) item;
mUsed = len;
mSize = len + 1;
} else {
mpBase = 0;
mUsed = 0;
mSize = 0;
appendBytes(item, len);
}
}
String(const String& other) {
mpBase = 0;
mUsed = 0;
mSize = 0;
appendBytes(other.getUnwrapped(), other.len());
}
~String() {
if (mpBase) {
free(mpBase);
}
}
String& operator=(const String& other) {
clear();
appendBytes(other.getUnwrapped(), other.len());
return *this;
}
inline char* getUnwrapped() const {
return mpBase;
}
void clear() {
mUsed = 0;
if (mSize > 0) {
mpBase[0] = 0;
}
}
void appendCStr(const char* s) {
appendBytes(s, strlen(s));
}
void appendBytes(const char* s, int n) {
memcpy(ensure(n), s, n + 1);
}
void append(char c) {
* ensure(1) = c;
}
char* orphan() {
char* result = mpBase;
mpBase = 0;
mUsed = 0;
mSize = 0;
return result;
}
void printf(const char* fmt,...) {
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
void vprintf(const char* fmt, va_list ap) {
char* temp;
int numChars = vasprintf(&temp, fmt, ap);
memcpy(ensure(numChars), temp, numChars+1);
free(temp);
}
inline size_t len() const {
return mUsed;
}
private:
char* ensure(int n) {
size_t newUsed = mUsed + n;
if (newUsed > mSize) {
size_t newSize = mSize * 2 + 10;
if (newSize < newUsed) {
newSize = newUsed;
}
mpBase = (char*) realloc(mpBase, newSize + 1);
mSize = newSize;
}
mpBase[newUsed] = '\0';
char* result = mpBase + mUsed;
mUsed = newUsed;
return result;
}
char* mpBase;
size_t mUsed;
size_t mSize;
};
/**
* Wrap an externally allocated string for use as a hash key.
*/
class FakeString : public String {
public:
FakeString(const char* string, size_t length) :
String((char*) string, length, true) {}
~FakeString() {
orphan();
}
};
template<class V> class StringTable {
public:
StringTable() {
init(10);
}
StringTable(size_t initialCapacity) {
init(initialCapacity);
}
~StringTable() {
clear();
hashmapFree(mpMap);
}
void clear() {
hashmapForEach(mpMap, freeKeyValue, this);
}
bool contains(String* pKey) {
bool result = hashmapContainsKey(mpMap, pKey);
return result;
}
V* get(String* pKey) {
V* result = (V*) hashmapGet(mpMap, pKey);
return result;
}
V* remove(String* pKey) {
V* result = (V*) hashmapRemove(mpMap, pKey);
return result;
}
V* put(String* pKey, V* value) {
V* result = (V*) hashmapPut(mpMap, pKey, value);
if (result) {
// The key was not adopted by the map, so delete it here.
delete pKey;
}
return result;
}
void forEach(bool (*callback)(String* key, V* value, void* context),
void* context) {
hashmapForEach(mpMap, (bool (*)(void*, void*, void*)) callback,
context);
}
protected:
void init(size_t initialCapacity) {
mpMap = hashmapCreate(initialCapacity, hashFn, equalsFn);
}
static int hashFn(void* pKey) {
String* pString = (String*) pKey;
return hashmapHash(pString->getUnwrapped(), pString->len());
}
static bool equalsFn(void* keyA, void* keyB) {
String* pStringA = (String*) keyA;
String* pStringB = (String*) keyB;
return pStringA->len() == pStringB->len()
&& strcmp(pStringA->getUnwrapped(), pStringB->getUnwrapped())
== 0;
}
static bool freeKeyValue(void* key, void* value, void* context) {
delete (String*) key;
delete (V*) value;
return true;
}
Hashmap* mpMap;
};
class MacroTable : public StringTable<String> {
public:
MacroTable() : StringTable<String>(10) {}
};
class KeywordTable {
public:
KeywordTable(){
mpMap = hashmapCreate(40, hashFn, equalsFn);
put("int", TOK_INT);
put("char", TOK_CHAR);
put("void", TOK_VOID);
put("if", TOK_IF);
put("else", TOK_ELSE);
put("while", TOK_WHILE);
put("break", TOK_BREAK);
put("return", TOK_RETURN);
put("for", TOK_FOR);
// TODO: remove these preprocessor-specific keywords. You should
// be able to have symbols named pragma or define.
put("pragma", TOK_PRAGMA);
put("define", TOK_DEFINE);
const char* unsupported[] = {
"auto",
"case",
"const",
"continue",
"default",
"do",
"double",
"enum",
"extern",
"float",
"goto",
"long",
"register",
"short",
"signed",
"sizeof",
"static",
"struct",
"switch",
"typedef",
"union",
"unsigned",
"volatile",
"_Bool",
"_Complex",
"_Imaginary",
"inline",
"restrict",
0};
for(int i = 0; unsupported[i]; i++) {
put(unsupported[i], TOK_UNSUPPORTED_KEYWORD);
}
}
~KeywordTable() {
hashmapFree(mpMap);
}
int get(String* key) {
return (int) hashmapGet(mpMap, key->getUnwrapped());
}
const char* lookupKeyFor(int value) {
FindValContext context;
context.key = 0;
hashmapForEach(mpMap, findKeyFn, &context);
return context.key;
}
private:
void put(const char* kw, int val) {
hashmapPut(mpMap, (void*) kw, (void*) val);
}
static int hashFn(void* pKey) {
char* pString = (char*) pKey;
return hashmapHash(pString, strlen(pString));
}
static bool equalsFn(void* keyA, void* keyB) {
const char* pStringA = (const char*) keyA;
const char* pStringB = (const char*) keyB;
return strcmp(pStringA, pStringB) == 0;
}
struct FindValContext {
char* key;
int value;
};
static bool findKeyFn(void* key, void* value, void* context) {
FindValContext* pContext = (FindValContext*) context;
if ((int) value == pContext->value) {
pContext->key = (char*) key;
return false;
}
return true;
}
Hashmap* mpMap;
};
template<class E> class Array {
public:
Array() {
mpBase = 0;
mUsed = 0;
mSize = 0;
}
~Array() {
if (mpBase) {
free(mpBase);
}
}
E get(int i) {
if (i < 0 || i > (int) mUsed) {
// error("internal error: Index out of range");
return E();
}
return mpBase[i];
}
void set(int i, E val) {
mpBase[i] = val;
}
void pop() {
if (mUsed > 0) {
mUsed -= 1;
} else {
// error("internal error: Popped empty stack.");
}
}
void push(E item) {
* ensure(1) = item;
}
size_t len() {
return mUsed;
}
private:
E* ensure(int n) {
size_t newUsed = mUsed + n;
if (newUsed > mSize) {
size_t newSize = mSize * 2 + 10;
if (newSize < newUsed) {
newSize = newUsed;
}
mpBase = (E*) realloc(mpBase, sizeof(E) * newSize);
mSize = newSize;
}
E* result = mpBase + mUsed;
mUsed = newUsed;
return result;
}
E* mpBase;
size_t mUsed;
size_t mSize;
};
struct InputState {
InputStream* pStream;
int oldCh;
};
struct VariableInfo {
VariableInfo() {
pAddress = 0;
pForward = 0;
}
void* pAddress;
void* pForward; // For a forward direction, linked list of data to fix up
};
typedef StringTable<VariableInfo> SymbolTable;
class SymbolStack {
public:
SymbolStack() {
mLevel = 0;
addEntry();
}
void pushLevel() {
mLevel++;
}
void popLevel() {
mLevel--;
Entry e = mStack.get(mStack.len()-1);
if (mLevel < e.level) {
mStack.pop();
delete e.pTable;
}
}
VariableInfo* get(String* pName) {
int len = mStack.len();
VariableInfo* v = NULL;
int level = -1;
for (int i = len - 1; i >= 0; i--) {
Entry e = mStack.get(i);
v = e.pTable->get(pName);
if (v) {
level = e.level;
break;
}
}
#if 0
fprintf(stderr, "Lookup %s %08x level %d\n", pName->getUnwrapped(), v, level);
if (v) {
fprintf(stderr, " %08x %08x\n", v->pAddress, v->pForward);
}
#endif
return v;
}
VariableInfo* addLocal(String* pName) {
int len = mStack.len();
if (mStack.get(len-1).level != mLevel) {
addEntry();
len++;
}
return addImp(len-1, pName);
}
VariableInfo* addGlobal(String* pName) {
return addImp(0, pName);
}
void forEachGlobal(
bool (*callback)(String* key, VariableInfo* value, void* context),
void* context) {
mStack.get(0).pTable->forEach(callback, context);
}
private:
VariableInfo* addImp(int entryIndex, String* pName) {
Entry e = mStack.get(entryIndex);
SymbolTable* pTable = e.pTable;
if (pTable->contains(pName)) {
return NULL;
}
VariableInfo* v = new VariableInfo();
delete pTable->put(pName, v);
#if 0
fprintf(stderr, "Add \"%s\" %08x level %d\n", pName->getUnwrapped(), v, e.level);
#endif
return v;
}
void addEntry() {
Entry e;
e.level = mLevel;
e.pTable = new SymbolTable();
mStack.push(e);
}
struct Entry {
Entry() {
level = 0;
pTable = NULL;
}
int level;
SymbolTable* pTable;
};
int mLevel;
Array<Entry> mStack;
};
int ch; // Current input character, or EOF
intptr_t tok; // token
intptr_t tokc; // token extra info
int tokl; // token operator level
intptr_t rsym; // return symbol
intptr_t loc; // local variable index
char* glo; // global variable index
String mTokenString;
char* dptr; // Macro state: Points to macro text during macro playback.
int dch; // Macro state: Saves old value of ch during a macro playback.
char* pGlobalBase;
KeywordTable mKeywords;
SymbolStack mSymbolTable;
InputStream* file;
CodeBuf codeBuf;
CodeGenerator* pGen;
MacroTable mMacros;
Array<InputState> mInputStateStack;
String mErrorBuf;
String mPragmas;
int mPragmaStringCount;
static const int ALLOC_SIZE = 99999;
static const int TOK_DUMMY = 1;
static const int TOK_NUM = 2;
// 3..255 are character and/or operators
// Keywords start at 0x100 and increase by 1
static const int TOK_KEYWORD = 0x100;
static const int TOK_INT = TOK_KEYWORD + 0;
static const int TOK_CHAR = TOK_KEYWORD + 1;
static const int TOK_VOID = TOK_KEYWORD + 2;
static const int TOK_IF = TOK_KEYWORD + 3;
static const int TOK_ELSE = TOK_KEYWORD + 4;
static const int TOK_WHILE = TOK_KEYWORD + 5;
static const int TOK_BREAK = TOK_KEYWORD + 6;
static const int TOK_RETURN = TOK_KEYWORD + 7;
static const int TOK_FOR = TOK_KEYWORD + 8;
static const int TOK_PRAGMA = TOK_KEYWORD + 9;
static const int TOK_DEFINE = TOK_KEYWORD + 10;
static const int TOK_UNSUPPORTED_KEYWORD = TOK_KEYWORD + 0xff;
static const int TOK_UNDEFINED_SYMBOL = 0x200;
// Symbols start at 0x300, but are really pointers to VariableInfo structs.
static const int TOK_SYMBOL = 0x300;
static const int LOCAL = 0x200;
static const int SYM_FORWARD = 0;
static const int SYM_DEFINE = 1;
/* tokens in string heap */
static const int TAG_TOK = ' ';
static const int OP_INCREMENT = 0;
static const int OP_DECREMENT = 1;
static const int OP_MUL = 2;
static const int OP_DIV = 3;
static const int OP_MOD = 4;
static const int OP_PLUS = 5;
static const int OP_MINUS = 6;
static const int OP_SHIFT_LEFT = 7;
static const int OP_SHIFT_RIGHT = 8;
static const int OP_LESS_EQUAL = 9;
static const int OP_GREATER_EQUAL = 10;
static const int OP_LESS = 11;
static const int OP_GREATER = 12;
static const int OP_EQUALS = 13;
static const int OP_NOT_EQUALS = 14;
static const int OP_LOGICAL_AND = 15;
static const int OP_LOGICAL_OR = 16;
static const int OP_BIT_AND = 17;
static const int OP_BIT_XOR = 18;
static const int OP_BIT_OR = 19;
static const int OP_BIT_NOT = 20;
static const int OP_LOGICAL_NOT = 21;
static const int OP_COUNT = 22;
/* Operators are searched from front, the two-character operators appear
* before the single-character operators with the same first character.
* @ is used to pad out single-character operators.
*/
static const char* operatorChars;
static const char operatorLevel[];
void pdef(int t) {
mTokenString.append(t);
}
void inp() {
if (dptr) {
ch = *dptr++;
if (ch == 0) {
dptr = 0;
ch = dch;
}
} else
ch = file->getChar();
#if 0
printf("ch='%c' 0x%x\n", ch, ch);
#endif
}
int isid() {
return isalnum(ch) | (ch == '_');
}
/* read a character constant, advances ch to after end of constant */
int getq() {
int val = ch;
if (ch == '\\') {
inp();
if (isoctal(ch)) {
// 1 to 3 octal characters.
val = 0;
for(int i = 0; i < 3; i++) {
if (isoctal(ch)) {
val = (val << 3) + ch - '0';
inp();
}
}
return val;
} else if (ch == 'x' || ch == 'X') {
// N hex chars
inp();
if (! isxdigit(ch)) {
error("'x' character escape requires at least one digit.");
} else {
val = 0;
while (isxdigit(ch)) {
int d = ch;
if (isdigit(d)) {
d -= '0';
} else if (d <= 'F') {
d = d - 'A' + 10;
} else {
d = d - 'a' + 10;
}
val = (val << 4) + d;
inp();
}
}
} else {
int val = ch;
switch (ch) {
case 'a':
val = '\a';
break;
case 'b':
val = '\b';
break;
case 'f':
val = '\f';
break;
case 'n':
val = '\n';
break;
case 'r':
val = '\r';
break;
case 't':
val = '\t';
break;
case 'v':
val = '\v';
break;
case '\\':
val = '\\';
break;
case '\'':
val = '\'';
break;
case '"':
val = '"';
break;
case '?':
val = '?';
break;
default:
error("Undefined character escape %c", ch);
break;
}
inp();
return val;
}
} else {
inp();
}
return val;
}
static bool isoctal(int ch) {
return ch >= '0' && ch <= '7';
}
void next() {
int l, a;
while (isspace(ch) | (ch == '#')) {
if (ch == '#') {
inp();
next();
if (tok == TOK_DEFINE) {
doDefine();
} else if (tok == TOK_PRAGMA) {
doPragma();
} else {
error("Unsupported preprocessor directive \"%s\"",
mTokenString.getUnwrapped());
}
}
inp();
}
tokl = 0;
tok = ch;
/* encode identifiers & numbers */
if (isid()) {
mTokenString.clear();
while (isid()) {
pdef(ch);
inp();
}
if (isdigit(tok)) {
tokc = strtol(mTokenString.getUnwrapped(), 0, 0);
tok = TOK_NUM;
} else {
// Is this a macro?
String* pValue = mMacros.get(&mTokenString);
if (pValue) {
// Yes, it is a macro
dptr = pValue->getUnwrapped();
dch = ch;
inp();
next();
} else {
// Is this a keyword?
int kwtok = mKeywords.get(&mTokenString);
if (kwtok) {
tok = kwtok;
// fprintf(stderr, "tok= keyword %s %x\n", last_id, tok);
} else {
tok = (intptr_t) mSymbolTable.get(&mTokenString);
if (!tok) {
tok = TOK_UNDEFINED_SYMBOL;
}
// fprintf(stderr, "tok= symbol %s %x\n", last_id, tok);
}
}
}
} else {
inp();
if (tok == '\'') {
tok = TOK_NUM;
tokc = getq();
if (ch != '\'') {
error("Expected a ' character, got %c", ch);
} else {
inp();
}
} else if ((tok == '/') & (ch == '*')) {
inp();
while (ch && ch != EOF) {
while (ch != '*' && ch != EOF)
inp();
inp();
if (ch == '/')
ch = 0;
}
if (ch == EOF) {
error("End of file inside comment.");
}
inp();
next();
} else if ((tok == '/') & (ch == '/')) {
inp();
while (ch && (ch != '\n') && (ch != EOF)) {
inp();
}
inp();
next();
} else {
const char* t = operatorChars;
int opIndex = 0;
while ((l = *t++) != 0) {
a = *t++;
tokl = operatorLevel[opIndex];
tokc = opIndex;
if ((l == tok) & ((a == ch) | (a == '@'))) {
#if 0
printf("%c%c -> tokl=%d tokc=0x%x\n",
l, a, tokl, tokc);
#endif
if (a == ch) {
inp();
tok = TOK_DUMMY; /* dummy token for double tokens */
}
break;
}
opIndex++;
}
if (l == 0) {
tokl = 0;
tokc = 0;
}
}
}
#if 0
{
const char* p;
printf("tok=0x%x ", tok);
if (tok >= TOK_KEYWORD) {
printf("'");
if (tok>= TOK_SYMBOL)
p = sym_stk + 1 + ((char*) tok - (char*) pVarsBase) / 8;
else {
p = mKeywords.lookupKeyFor(tok);
if (!p) {
p = "unknown keyword";
}
}
while (*p != TAG_TOK && *p)
printf("%c", *p++);
printf("'\n");
} else if (tok == TOK_NUM) {
printf("%d\n", tokc);
} else {
printf("'%c'\n", tok);
}
}
#endif
}
void doDefine() {
String* pName = new String();
while (isspace(ch)) {
inp();
}
while (isid()) {
pName->append(ch);
inp();
}
if (ch == '(') {
delete pName;
error("Defines with arguments not supported");
return;
}
while (isspace(ch)) {
inp();
}
String* pValue = new String();
while (ch != '\n' && ch != EOF) {
pValue->append(ch);
inp();
}
delete mMacros.put(pName, pValue);
}
void doPragma() {
// # pragma name(val)
int state = 0;
while(ch != EOF && ch != '\n' && state < 10) {
switch(state) {
case 0:
if (isspace(ch)) {
inp();
} else {
state++;
}
break;
case 1:
if (isalnum(ch)) {
mPragmas.append(ch);
inp();
} else if (ch == '(') {
mPragmas.append(0);
inp();
state++;
} else {
state = 11;
}
break;
case 2:
if (isalnum(ch)) {
mPragmas.append(ch);
inp();
} else if (ch == ')') {
mPragmas.append(0);
inp();
state = 10;
} else {
state = 11;
}
break;
}
}
if(state != 10) {
error("Unexpected pragma syntax");
}
mPragmaStringCount += 2;
}
virtual void verror(const char* fmt, va_list ap) {
mErrorBuf.printf("%ld: ", file->getLine());
mErrorBuf.vprintf(fmt, ap);
mErrorBuf.printf("\n");
}
void skip(intptr_t c) {
if (tok != c) {
error("'%c' expected", c);
}
next();
}
/* l is one if '=' parsing wanted (quick hack) */
void unary(intptr_t l) {
intptr_t n, t, a;
int c;
String tString;
t = 0;
n = 1; /* type of expression 0 = forward, 1 = value, other = lvalue */
if (tok == '\"') {
pGen->li((int) glo);
while (ch != '\"' && ch != EOF) {
*allocGlobalSpace(1) = getq();
}
if (ch != '\"') {
error("Unterminated string constant.");
}
*glo = 0;
/* align heap */
allocGlobalSpace((char*) (((intptr_t) glo + 4) & -4) - glo);
inp();
next();
} else {
c = tokl;
a = tokc;
t = tok;
tString = mTokenString;
next();
if (t == TOK_NUM) {
pGen->li(a);
} else if (c == 2) {
/* -, +, !, ~ */
unary(0);
pGen->clearR1();
if (t == '!')
pGen->gcmp(a);
else
pGen->genOp(a);
} else if (t == '(') {
expr();
skip(')');
} else if (t == '*') {
/* parse cast */
skip('(');
t = tok; /* get type */
next(); /* skip int/char/void */
next(); /* skip '*' or '(' */
if (tok == '*') {
/* function type */
skip('*');
skip(')');
skip('(');
skip(')');
t = 0;
}
skip(')');
unary(0);
if (tok == '=') {
next();
pGen->pushR0();
expr();
pGen->popR1();
pGen->storeR0ToR1(t == TOK_INT);
} else if (t) {
pGen->loadR0FromR0(t == TOK_INT);
}
} else if (t == '&') {
pGen->leaR0(*(int *) tok);
next();
} else if (t == EOF ) {
error("Unexpected EOF.");
} else if (!checkSymbol(t, &tString)) {
// Don't have to do anything special here, the error
// message was printed by checkSymbol() above.
} else {
if (t == TOK_UNDEFINED_SYMBOL) {
t = (intptr_t) mSymbolTable.addGlobal(
new String(tString));
}
n = (intptr_t) ((VariableInfo*) t)->pAddress;
/* forward reference: try dlsym */
if (!n) {
n = (intptr_t) dlsym(RTLD_DEFAULT,
tString.getUnwrapped());
((VariableInfo*) t)->pAddress = (void*) n;
}
if ((tok == '=') & l) {
/* assignment */
next();
expr();
pGen->storeR0(n);
} else if (tok != '(') {
/* variable */
if (!n) {
error("Undefined variable %s", tString.getUnwrapped());
}
pGen->loadR0(n, tokl == 11, tokc);
if (tokl == 11) {
next();
}
}
}
}
/* function call */
if (tok == '(') {
if (n == 1)
pGen->pushR0();
/* push args and invert order */
a = pGen->beginFunctionCallArguments();
next();
l = 0;
while (tok != ')' && tok != EOF) {
expr();
pGen->storeR0ToArg(l);
if (tok == ',')
next();
l = l + 4;
}
pGen->endFunctionCallArguments(a, l);
skip(')');
if (!n) {
/* forward reference */
t = t + 4;
*(int *) t = pGen->callForward(*(int *) t);
} else if (n == 1) {
pGen->callIndirect(l);
} else {
pGen->callRelative(n - codeBuf.getPC() - pGen->jumpOffset());
}
if (l | (n == 1))
pGen->adjustStackAfterCall(l, n == 1);
}
}
void sum(int l) {
intptr_t t, n, a;
t = 0;
if (l-- == 1)
unary(1);
else {
sum(l);
a = 0;
while (l == tokl) {
n = tok;
t = tokc;
next();
if (l > 8) {
a = pGen->gtst(t == OP_LOGICAL_OR, a); /* && and || output code generation */
sum(l);
} else {
pGen->pushR0();
sum(l);
pGen->popR1();
if ((l == 4) | (l == 5)) {
pGen->gcmp(t);
} else {
pGen->genOp(t);
}
}
}
/* && and || output code generation */
if (a && l > 8) {
a = pGen->gtst(t == OP_LOGICAL_OR, a);
pGen->li(t != OP_LOGICAL_OR);
pGen->gjmp(5); /* jmp $ + 5 (sizeof li, FIXME for ARM) */
pGen->gsym(a);
pGen->li(t == OP_LOGICAL_OR);
}
}
}
void expr() {
sum(11);
}
int test_expr() {
expr();
return pGen->gtst(0, 0);
}
void block(intptr_t l, bool outermostFunctionBlock) {
intptr_t a, n, t;
if (tok == TOK_INT || tok == TOK_CHAR) {
/* declarations */
localDeclarations();
} else if (tok == TOK_IF) {
next();
skip('(');
a = test_expr();
skip(')');
block(l, false);
if (tok == TOK_ELSE) {
next();
n = pGen->gjmp(0); /* jmp */
pGen->gsym(a);
block(l, false);
pGen->gsym(n); /* patch else jmp */
} else {
pGen->gsym(a); /* patch if test */
}
} else if ((tok == TOK_WHILE) | (tok == TOK_FOR)) {
t = tok;
next();
skip('(');
if (t == TOK_WHILE) {
n = codeBuf.getPC(); // top of loop, target of "next" iteration
a = test_expr();
} else {
if (tok != ';')
expr();
skip(';');
n = codeBuf.getPC();
a = 0;
if (tok != ';')
a = test_expr();
skip(';');
if (tok != ')') {
t = pGen->gjmp(0);
expr();
pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset());
pGen->gsym(t);
n = t + 4;
}
}
skip(')');
block((intptr_t) &a, false);
pGen->gjmp(n - codeBuf.getPC() - pGen->jumpOffset()); /* jmp */
pGen->gsym(a);
} else if (tok == '{') {
if (! outermostFunctionBlock) {
mSymbolTable.pushLevel();
}
next();
while (tok != '}' && tok != EOF)
block(l, false);
skip('}');
if (! outermostFunctionBlock) {
mSymbolTable.popLevel();
}
} else {
if (tok == TOK_RETURN) {
next();
if (tok != ';')
expr();
rsym = pGen->gjmp(rsym); /* jmp */
} else if (tok == TOK_BREAK) {
next();
*(int *) l = pGen->gjmp(*(int *) l);
} else if (tok != ';')
expr();
skip(';');
}
}
typedef int Type;
static const Type TY_UNKNOWN = 0;
static const Type TY_INT = 1;
static const Type TY_CHAR = 2;
static const Type TY_VOID = 3;
static const int TY_BASE_TYPE_MASK = 0xf;
static const int TY_INDIRECTION_MASK = 0xf0;
static const int TY_INDIRECTION_SHIFT = 4;
static const int MAX_INDIRECTION_COUNT = 15;
Type getBaseType(Type t) {
return t & TY_BASE_TYPE_MASK;
}
int getIndirectionCount(Type t) {
return (TY_INDIRECTION_MASK & t) >> TY_INDIRECTION_SHIFT;
}
void setIndirectionCount(Type& t, int count) {
t = ((TY_INDIRECTION_MASK & (count << TY_INDIRECTION_SHIFT))
| (t & ~TY_INDIRECTION_MASK));
}
bool acceptType(Type& t) {
t = TY_UNKNOWN;
if (tok == TOK_INT) {
t = TY_INT;
} else if (tok == TOK_CHAR) {
t = TY_CHAR;
} else if (tok == TOK_VOID) {
t = TY_VOID;
} else {
return false;
}
next();
return true;
}
Type acceptPointerDeclaration(Type& base) {
Type t = base;
int indirectionCount = 0;
while (tok == '*' && indirectionCount <= MAX_INDIRECTION_COUNT) {
next();
indirectionCount++;
}
if (indirectionCount > MAX_INDIRECTION_COUNT) {
error("Too many levels of pointer. Max %d", MAX_INDIRECTION_COUNT);
}
setIndirectionCount(t, indirectionCount);
return t;
}
void expectType(Type& t) {
if (!acceptType(t)) {
error("Expected a type.");
}
}
void addGlobalSymbol() {
tok = (intptr_t) mSymbolTable.addGlobal(
new String(mTokenString));
reportIfDuplicate();
}
void reportIfDuplicate() {
if (!tok) {
error("Duplicate definition of %s", mTokenString.getUnwrapped());
}
}
void addLocalSymbol() {
tok = (intptr_t) mSymbolTable.addLocal(
new String(mTokenString));
reportIfDuplicate();
}
void localDeclarations() {
intptr_t a;
Type base;
while (acceptType(base)) {
while (tok != ';' && tok != EOF) {
Type t = acceptPointerDeclaration(t);
int variableAddress = 0;
if (checkSymbol()) {
addLocalSymbol();
if (tok) {
loc = loc + 4;
variableAddress = -loc;
((VariableInfo*) tok)->pAddress = (void*) variableAddress;
}
}
next();
if (tok == '=') {
/* assignment */
next();
expr();
pGen->storeR0(variableAddress);
}
if (tok == ',')
next();
}
skip(';');
}
}
bool checkSymbol() {
return checkSymbol(tok, &mTokenString);
}
bool checkSymbol(int token, String* pText) {
bool result = token < EOF || token >= TOK_UNDEFINED_SYMBOL;
if (!result) {
String temp;
if (token == EOF ) {
temp.printf("EOF");
} else if (token == TOK_NUM) {
temp.printf("numeric constant");
} else if (token >= 0 && token < 256) {
temp.printf("char \'%c\'", token);
} else if (token >= TOK_KEYWORD && token < TOK_UNSUPPORTED_KEYWORD) {
temp.printf("keyword \"%s\"", pText->getUnwrapped());
} else {
temp.printf("reserved keyword \"%s\"",
pText->getUnwrapped());
}
error("Expected symbol. Got %s", temp.getUnwrapped());
}
return result;
}
void globalDeclarations() {
while (tok != EOF) {
Type base;
expectType(base);
Type t = acceptPointerDeclaration(t);
if (tok >= 0 && tok < TOK_UNDEFINED_SYMBOL) {
error("Unexpected token %d", tok);
break;
}
if (tok == TOK_UNDEFINED_SYMBOL) {
addGlobalSymbol();
}
VariableInfo* name = (VariableInfo*) tok;
if (name && name->pAddress) {
error("Already defined global %s",
mTokenString.getUnwrapped());
}
next();
if (tok == ',' || tok == ';' || tok == '=') {
// it's a variable declaration
for(;;) {
if (name) {
name->pAddress = (int*) allocGlobalSpace(4);
}
if (tok == '=') {
next();
if (tok == TOK_NUM) {
if (name) {
* (int*) name->pAddress = tokc;
}
next();
} else {
error("Expected an integer constant");
}
}
if (tok != ',') {
break;
}
skip(',');
t = acceptPointerDeclaration(t);
addGlobalSymbol();
name = (VariableInfo*) tok;
next();
}
skip(';');
} else {
if (name) {
/* patch forward references (XXX: does not work for function
pointers) */
pGen->gsym((int) name->pForward);
/* put function address */
name->pAddress = (void*) codeBuf.getPC();
}
skip('(');
mSymbolTable.pushLevel();
intptr_t a = 8;
int argCount = 0;
while (tok != ')' && tok != EOF) {
Type aType;
expectType(aType);
aType = acceptPointerDeclaration(aType);
if (checkSymbol()) {
addLocalSymbol();
if (tok) {
/* read param name and compute offset */
*(int *) tok = a;
a = a + 4;
}
}
next();
if (tok == ',')
next();
argCount++;
}
skip(')');
rsym = loc = 0;
a = pGen->functionEntry(argCount);
block(0, true);
pGen->gsym(rsym);
pGen->functionExit(argCount, a, loc);
mSymbolTable.popLevel();
}
}
}
char* allocGlobalSpace(int bytes) {
if (glo - pGlobalBase + bytes > ALLOC_SIZE) {
error("Global space exhausted");
return NULL;
}
char* result = glo;
glo += bytes;
return result;
}
void cleanup() {
if (pGlobalBase != 0) {
free(pGlobalBase);
pGlobalBase = 0;
}
if (pGen) {
delete pGen;
pGen = 0;
}
if (file) {
delete file;
file = 0;
}
}
void clear() {
tok = 0;
tokc = 0;
tokl = 0;
ch = 0;
rsym = 0;
loc = 0;
glo = 0;
dptr = 0;
dch = 0;
file = 0;
pGlobalBase = 0;
pGen = 0;
mPragmaStringCount = 0;
}
void setArchitecture(const char* architecture) {
delete pGen;
pGen = 0;
if (architecture != NULL) {
#ifdef PROVIDE_ARM_CODEGEN
if (! pGen && strcmp(architecture, "arm") == 0) {
pGen = new ARMCodeGenerator();
}
#endif
#ifdef PROVIDE_X86_CODEGEN
if (! pGen && strcmp(architecture, "x86") == 0) {
pGen = new X86CodeGenerator();
}
#endif
if (!pGen ) {
error("Unknown architecture %s\n", architecture);
}
}
if (pGen == NULL) {
#if defined(DEFAULT_ARM_CODEGEN)
pGen = new ARMCodeGenerator();
#elif defined(DEFAULT_X86_CODEGEN)
pGen = new X86CodeGenerator();
#endif
}
if (pGen == NULL) {
error("No code generator defined.");
} else {
pGen->setErrorSink(this);
}
}
public:
struct args {
args() {
architecture = 0;
}
const char* architecture;
};
Compiler() {
clear();
}
~Compiler() {
cleanup();
}
int compile(const char* text, size_t textLength) {
int result;
cleanup();
clear();
codeBuf.init(ALLOC_SIZE);
setArchitecture(NULL);
if (!pGen) {
return -1;
}
#ifdef PROVIDE_TRACE_CODEGEN
pGen = new TraceCodeGenerator(pGen);
#endif
pGen->setErrorSink(this);
pGen->init(&codeBuf);
file = new TextInputStream(text, textLength);
pGlobalBase = (char*) calloc(1, ALLOC_SIZE);
glo = pGlobalBase;
inp();
next();
globalDeclarations();
checkForUndefinedForwardReferences();
result = pGen->finishCompile();
if (result == 0) {
if (mErrorBuf.len()) {
result = -2;
}
}
return result;
}
void checkForUndefinedForwardReferences() {
mSymbolTable.forEachGlobal(static_ufrcFn, this);
}
static bool static_ufrcFn(String* key, VariableInfo* value,
void* context) {
Compiler* pCompiler = (Compiler*) context;
return pCompiler->undefinedForwardReferenceCheck(key, value);
}
bool undefinedForwardReferenceCheck(String* key, VariableInfo* value) {
#if 0
fprintf(stderr, "%s 0x%8x 0x%08x\n", key->getUnwrapped(),
value->pAddress, value->pForward);
#endif
if (!value->pAddress && value->pForward) {
error("Undefined forward reference: %s", key->getUnwrapped());
}
return true;
}
int dump(FILE* out) {
fwrite(codeBuf.getBase(), 1, codeBuf.getSize(), out);
return 0;
}
int disassemble(FILE* out) {
return pGen->disassemble(out);
}
/* Look through the symbol table to find a symbol.
* If found, return its value.
*/
void* lookup(const char* name) {
String string(name, -1, false);
VariableInfo* pVariableInfo = mSymbolTable.get(&string);
if (pVariableInfo) {
return pVariableInfo->pAddress;
}
return NULL;
}
void getPragmas(ACCsizei* actualStringCount,
ACCsizei maxStringCount, ACCchar** strings) {
int stringCount = mPragmaStringCount;
if (actualStringCount) {
*actualStringCount = stringCount;
}
if (stringCount > maxStringCount) {
stringCount = maxStringCount;
}
if (strings) {
char* pPragmas = mPragmas.getUnwrapped();
while (stringCount-- > 0) {
*strings++ = pPragmas;
pPragmas += strlen(pPragmas) + 1;
}
}
}
char* getErrorMessage() {
return mErrorBuf.getUnwrapped();
}
};
const char* Compiler::operatorChars =
"++--*@/@%@+@-@<<>><=>=<@>@==!=&&||&@^@|@~@!@";
const char Compiler::operatorLevel[] =
{11, 11, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4,
5, 5, /* ==, != */
9, 10, /* &&, || */
6, 7, 8, /* & ^ | */
2, 2 /* ~ ! */
};
#ifdef PROVIDE_ARM_CODEGEN
FILE* Compiler::ARMCodeGenerator::disasmOut;
#endif
#ifdef PROVIDE_X86_CODEGEN
const int Compiler::X86CodeGenerator::operatorHelper[] = {
0x1, // ++
0xff, // --
0xc1af0f, // *
0xf9f79991, // /
0xf9f79991, // % (With manual assist to swap results)
0xc801, // +
0xd8f7c829, // -
0xe0d391, // <<
0xf8d391, // >>
0xe, // <=
0xd, // >=
0xc, // <
0xf, // >
0x4, // ==
0x5, // !=
0x0, // &&
0x1, // ||
0xc821, // &
0xc831, // ^
0xc809, // |
0xd0f7, // ~
0x4 // !
};
#endif
struct ACCscript {
ACCscript() {
text = 0;
textLength = 0;
accError = ACC_NO_ERROR;
}
~ACCscript() {
delete text;
}
void setError(ACCenum error) {
if (accError == ACC_NO_ERROR && error != ACC_NO_ERROR) {
accError = error;
}
}
ACCenum getError() {
ACCenum result = accError;
accError = ACC_NO_ERROR;
return result;
}
Compiler compiler;
char* text;
int textLength;
ACCenum accError;
};
extern "C"
ACCscript* accCreateScript() {
return new ACCscript();
}
extern "C"
ACCenum accGetError( ACCscript* script ) {
return script->getError();
}
extern "C"
void accDeleteScript(ACCscript* script) {
delete script;
}
extern "C"
void accScriptSource(ACCscript* script,
ACCsizei count,
const ACCchar ** string,
const ACCint * length) {
int totalLength = 0;
for(int i = 0; i < count; i++) {
int len = -1;
const ACCchar* s = string[i];
if (length) {
len = length[i];
}
if (len < 0) {
len = strlen(s);
}
totalLength += len;
}
delete script->text;
char* text = new char[totalLength + 1];
script->text = text;
script->textLength = totalLength;
char* dest = text;
for(int i = 0; i < count; i++) {
int len = -1;
const ACCchar* s = string[i];
if (length) {
len = length[i];
}
if (len < 0) {
len = strlen(s);
}
memcpy(dest, s, len);
dest += len;
}
text[totalLength] = '\0';
}
extern "C"
void accCompileScript(ACCscript* script) {
int result = script->compiler.compile(script->text, script->textLength);
if (result) {
script->setError(ACC_INVALID_OPERATION);
}
}
extern "C"
void accGetScriptiv(ACCscript* script,
ACCenum pname,
ACCint * params) {
switch (pname) {
case ACC_INFO_LOG_LENGTH:
*params = 0;
break;
}
}
extern "C"
void accGetScriptInfoLog(ACCscript* script,
ACCsizei maxLength,
ACCsizei * length,
ACCchar * infoLog) {
char* message = script->compiler.getErrorMessage();
int messageLength = strlen(message) + 1;
if (length) {
*length = messageLength;
}
if (infoLog && maxLength > 0) {
int trimmedLength = maxLength < messageLength ?
maxLength : messageLength;
memcpy(infoLog, message, trimmedLength);
infoLog[trimmedLength] = 0;
}
}
extern "C"
void accGetScriptLabel(ACCscript* script, const ACCchar * name,
ACCvoid ** address) {
void* value = script->compiler.lookup(name);
if (value) {
*address = value;
} else {
script->setError(ACC_INVALID_VALUE);
}
}
extern "C"
void accGetPragmas(ACCscript* script, ACCsizei* actualStringCount,
ACCsizei maxStringCount, ACCchar** strings){
script->compiler.getPragmas(actualStringCount, maxStringCount, strings);
}
} // namespace acc