blob: a88d2fe0079f14ff91389f3cf86ee71afc0b276f [file] [log] [blame]
Paul Lind2bc2b792012-02-01 10:54:19 -08001/* libs/pixelflinger/codeflinger/MIPSAssembler.cpp
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9** http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19/* MIPS assembler and ARM->MIPS assembly translator
20**
21** The approach is to leave the GGLAssembler and associated files largely
22** un-changed, still utilizing all Arm instruction generation. Via the
23** ArmToMipsAssembler (subclassed from ArmAssemblerInterface) each Arm
24** instruction is translated to one or more Mips instructions as necessary. This
25** is clearly less efficient than a direct implementation within the
26** GGLAssembler, but is far cleaner, more maintainable, and has yielded very
27** significant performance gains on Mips compared to the generic pixel pipeline.
28**
29**
30** GGLAssembler changes
31**
32** - The register allocator has been modified to re-map Arm registers 0-15 to mips
33** registers 2-17. Mips register 0 cannot be used as general-purpose register,
34** and register 1 has traditional uses as a short-term temporary.
35**
36** - Added some early bailouts for OUT_OF_REGISTERS in texturing.cpp and
37** GGLAssembler.cpp, since this is not fatal, and can be retried at lower
38** optimization level.
39**
40**
41** ARMAssembler and ARMAssemblerInterface changes
42**
43** Refactored ARM address-mode static functions (imm(), reg_imm(), imm12_pre(), etc.)
44** to virtual, so they can be overridden in MIPSAssembler. The implementation of these
45** functions on ARM is moved from ARMAssemblerInterface.cpp to ARMAssembler.cpp, and
46** is unchanged from the original. (This required duplicating 2 of these as static
47** functions in ARMAssemblerInterface.cpp so they could be used as static initializers).
48*/
49
50
51#define LOG_TAG "MIPSAssembler"
52
53#include <stdio.h>
54#include <stdlib.h>
55#include <cutils/log.h>
56#include <cutils/properties.h>
57
58#if defined(WITH_LIB_HARDWARE)
59#include <hardware_legacy/qemu_tracing.h>
60#endif
61
62#include <private/pixelflinger/ggl_context.h>
63
Mathias Agopian9857d992013-04-01 15:17:55 -070064#include "MIPSAssembler.h"
65#include "CodeCache.h"
66#include "mips_disassem.h"
Paul Lind2bc2b792012-02-01 10:54:19 -080067
68// Choose MIPS arch variant following gcc flags
69#if defined(__mips__) && __mips==32 && __mips_isa_rev>=2
70#define mips32r2 1
71#else
72#define mips32r2 0
73#endif
74
75
76#define NOT_IMPLEMENTED() LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__)
77
78
79
80// ----------------------------------------------------------------------------
81
82namespace android {
83
84// ----------------------------------------------------------------------------
85#if 0
86#pragma mark -
87#pragma mark ArmToMipsAssembler...
88#endif
89
90ArmToMipsAssembler::ArmToMipsAssembler(const sp<Assembly>& assembly,
91 char *abuf, int linesz, int instr_count)
92 : ARMAssemblerInterface(),
93 mArmDisassemblyBuffer(abuf),
94 mArmLineLength(linesz),
95 mArmInstrCount(instr_count),
96 mInum(0),
97 mAssembly(assembly)
98{
99 mMips = new MIPSAssembler(assembly, this);
100 mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *));
101 init_conditional_labels();
102}
103
104ArmToMipsAssembler::~ArmToMipsAssembler()
105{
106 delete mMips;
107 free((void *) mArmPC);
108}
109
110uint32_t* ArmToMipsAssembler::pc() const
111{
112 return mMips->pc();
113}
114
115uint32_t* ArmToMipsAssembler::base() const
116{
117 return mMips->base();
118}
119
120void ArmToMipsAssembler::reset()
121{
122 cond.labelnum = 0;
123 mInum = 0;
124 mMips->reset();
125}
126
127int ArmToMipsAssembler::getCodegenArch()
128{
129 return CODEGEN_ARCH_MIPS;
130}
131
132void ArmToMipsAssembler::comment(const char* string)
133{
134 mMips->comment(string);
135}
136
137void ArmToMipsAssembler::label(const char* theLabel)
138{
139 mMips->label(theLabel);
140}
141
142void ArmToMipsAssembler::disassemble(const char* name)
143{
144 mMips->disassemble(name);
145}
146
147void ArmToMipsAssembler::init_conditional_labels()
148{
149 int i;
150 for (i=0;i<99; ++i) {
151 sprintf(cond.label[i], "cond_%d", i);
152 }
153}
154
155
156
157#if 0
158#pragma mark -
159#pragma mark Prolog/Epilog & Generate...
160#endif
161
162void ArmToMipsAssembler::prolog()
163{
164 mArmPC[mInum++] = pc(); // save starting PC for this instr
165
166 mMips->ADDIU(R_sp, R_sp, -(5 * 4));
167 mMips->SW(R_s0, R_sp, 0);
168 mMips->SW(R_s1, R_sp, 4);
169 mMips->SW(R_s2, R_sp, 8);
170 mMips->SW(R_s3, R_sp, 12);
171 mMips->SW(R_s4, R_sp, 16);
172 mMips->MOVE(R_v0, R_a0); // move context * passed in a0 to v0 (arm r0)
173}
174
175void ArmToMipsAssembler::epilog(uint32_t touched)
176{
177 mArmPC[mInum++] = pc(); // save starting PC for this instr
178
179 mMips->LW(R_s0, R_sp, 0);
180 mMips->LW(R_s1, R_sp, 4);
181 mMips->LW(R_s2, R_sp, 8);
182 mMips->LW(R_s3, R_sp, 12);
183 mMips->LW(R_s4, R_sp, 16);
184 mMips->ADDIU(R_sp, R_sp, (5 * 4));
185 mMips->JR(R_ra);
186
187}
188
189int ArmToMipsAssembler::generate(const char* name)
190{
191 return mMips->generate(name);
192}
193
194uint32_t* ArmToMipsAssembler::pcForLabel(const char* label)
195{
196 return mMips->pcForLabel(label);
197}
198
199
200
201//----------------------------------------------------------
202
203#if 0
204#pragma mark -
205#pragma mark Addressing modes & shifters...
206#endif
207
208
209// do not need this for MIPS, but it is in the Interface (virtual)
210int ArmToMipsAssembler::buildImmediate(
211 uint32_t immediate, uint32_t& rot, uint32_t& imm)
212{
213 // for MIPS, any 32-bit immediate is OK
214 rot = 0;
215 imm = immediate;
216 return 0;
217}
218
219// shifters...
220
221bool ArmToMipsAssembler::isValidImmediate(uint32_t immediate)
222{
223 // for MIPS, any 32-bit immediate is OK
224 return true;
225}
226
227uint32_t ArmToMipsAssembler::imm(uint32_t immediate)
228{
229 // ALOGW("immediate value %08x at pc %08x\n", immediate, (int)pc());
230 amode.value = immediate;
231 return AMODE_IMM;
232}
233
234uint32_t ArmToMipsAssembler::reg_imm(int Rm, int type, uint32_t shift)
235{
236 amode.reg = Rm;
237 amode.stype = type;
238 amode.value = shift;
239 return AMODE_REG_IMM;
240}
241
242uint32_t ArmToMipsAssembler::reg_rrx(int Rm)
243{
244 // reg_rrx mode is not used in the GLLAssember code at this time
245 return AMODE_UNSUPPORTED;
246}
247
248uint32_t ArmToMipsAssembler::reg_reg(int Rm, int type, int Rs)
249{
250 // reg_reg mode is not used in the GLLAssember code at this time
251 return AMODE_UNSUPPORTED;
252}
253
254
255// addressing modes...
256// LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0)
257uint32_t ArmToMipsAssembler::immed12_pre(int32_t immed12, int W)
258{
259 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
260 "LDR(B)/STR(B)/PLD immediate too big (%08x)",
261 immed12);
262 amode.value = immed12;
263 amode.writeback = W;
264 return AMODE_IMM_12_PRE;
265}
266
267uint32_t ArmToMipsAssembler::immed12_post(int32_t immed12)
268{
269 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
270 "LDR(B)/STR(B)/PLD immediate too big (%08x)",
271 immed12);
272
273 amode.value = immed12;
274 return AMODE_IMM_12_POST;
275}
276
277uint32_t ArmToMipsAssembler::reg_scale_pre(int Rm, int type,
278 uint32_t shift, int W)
279{
280 LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented");
281
282 amode.reg = Rm;
283 // amode.stype = type; // more advanced modes not used in GGLAssembler yet
284 // amode.value = shift;
285 // amode.writeback = W;
286 return AMODE_REG_SCALE_PRE;
287}
288
289uint32_t ArmToMipsAssembler::reg_scale_post(int Rm, int type, uint32_t shift)
290{
291 LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n");
292 return AMODE_UNSUPPORTED;
293}
294
295// LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0)
296uint32_t ArmToMipsAssembler::immed8_pre(int32_t immed8, int W)
297{
298 // uint32_t offset = abs(immed8);
299
300 LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n");
301
302 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
303 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
304 immed8);
305 return AMODE_IMM_8_PRE;
306}
307
308uint32_t ArmToMipsAssembler::immed8_post(int32_t immed8)
309{
310 // uint32_t offset = abs(immed8);
311
312 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
313 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
314 immed8);
315 amode.value = immed8;
316 return AMODE_IMM_8_POST;
317}
318
319uint32_t ArmToMipsAssembler::reg_pre(int Rm, int W)
320{
321 LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented");
322 amode.reg = Rm;
323 return AMODE_REG_PRE;
324}
325
326uint32_t ArmToMipsAssembler::reg_post(int Rm)
327{
328 LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n");
329 return AMODE_UNSUPPORTED;
330}
331
332
333
334// ----------------------------------------------------------------------------
335
336#if 0
337#pragma mark -
338#pragma mark Data Processing...
339#endif
340
341
342static const char * const dpOpNames[] = {
343 "AND", "EOR", "SUB", "RSB", "ADD", "ADC", "SBC", "RSC",
344 "TST", "TEQ", "CMP", "CMN", "ORR", "MOV", "BIC", "MVN"
345};
346
347// check if the operand registers from a previous CMP or S-bit instruction
348// would be overwritten by this instruction. If so, move the value to a
349// safe register.
350// Note that we cannot tell at _this_ instruction time if a future (conditional)
351// instruction will _also_ use this value (a defect of the simple 1-pass, one-
352// instruction-at-a-time translation). Therefore we must be conservative and
353// save the value before it is overwritten. This costs an extra MOVE instr.
354
355void ArmToMipsAssembler::protectConditionalOperands(int Rd)
356{
357 if (Rd == cond.r1) {
358 mMips->MOVE(R_cmp, cond.r1);
359 cond.r1 = R_cmp;
360 }
361 if (cond.type == CMP_COND && Rd == cond.r2) {
362 mMips->MOVE(R_cmp2, cond.r2);
363 cond.r2 = R_cmp2;
364 }
365}
366
367
368// interprets the addressing mode, and generates the common code
369// used by the majority of data-processing ops. Many MIPS instructions
370// have a register-based form and a different immediate form. See
371// opAND below for an example. (this could be inlined)
372//
373// this works with the imm(), reg_imm() methods above, which are directly
374// called by the GLLAssembler.
375// note: _signed parameter defaults to false (un-signed)
376// note: tmpReg parameter defaults to 1, MIPS register AT
377int ArmToMipsAssembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg)
378{
379 if (op < AMODE_REG) {
380 source = op;
381 return SRC_REG;
382 } else if (op == AMODE_IMM) {
383 if ((!_signed && amode.value > 0xffff)
384 || (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) {
385 mMips->LUI(tmpReg, (amode.value >> 16));
386 if (amode.value & 0x0000ffff) {
387 mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff));
388 }
389 source = tmpReg;
390 return SRC_REG;
391 } else {
392 source = amode.value;
393 return SRC_IMM;
394 }
395 } else if (op == AMODE_REG_IMM) {
396 switch (amode.stype) {
397 case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break;
398 case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break;
399 case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break;
400 case ROR: if (mips32r2) {
401 mMips->ROTR(tmpReg, amode.reg, amode.value);
402 } else {
403 mMips->RORIsyn(tmpReg, amode.reg, amode.value);
404 }
405 break;
406 }
407 source = tmpReg;
408 return SRC_REG;
409 } else { // adr mode RRX is not used in GGL Assembler at this time
410 // we are screwed, this should be exception, assert-fail or something
411 LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n");
412 return SRC_ERROR;
413 }
414}
415
416
417void ArmToMipsAssembler::dataProcessing(int opcode, int cc,
418 int s, int Rd, int Rn, uint32_t Op2)
419{
420 int src; // src is modified by dataProcAdrModes() - passed as int&
421
422
423 if (cc != AL) {
424 protectConditionalOperands(Rd);
425 // the branch tests register(s) set by prev CMP or instr with 'S' bit set
426 // inverse the condition to jump past this conditional instruction
427 ArmToMipsAssembler::B(cc^1, cond.label[++cond.labelnum]);
428 } else {
429 mArmPC[mInum++] = pc(); // save starting PC for this instr
430 }
431
432 switch (opcode) {
433 case opAND:
434 if (dataProcAdrModes(Op2, src) == SRC_REG) {
435 mMips->AND(Rd, Rn, src);
436 } else { // adr mode was SRC_IMM
437 mMips->ANDI(Rd, Rn, src);
438 }
439 break;
440
441 case opADD:
442 // set "signed" to true for adr modes
443 if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
444 mMips->ADDU(Rd, Rn, src);
445 } else { // adr mode was SRC_IMM
446 mMips->ADDIU(Rd, Rn, src);
447 }
448 break;
449
450 case opSUB:
451 // set "signed" to true for adr modes
452 if (dataProcAdrModes(Op2, src, true) == SRC_REG) {
453 mMips->SUBU(Rd, Rn, src);
454 } else { // adr mode was SRC_IMM
455 mMips->SUBIU(Rd, Rn, src);
456 }
457 break;
458
459 case opEOR:
460 if (dataProcAdrModes(Op2, src) == SRC_REG) {
461 mMips->XOR(Rd, Rn, src);
462 } else { // adr mode was SRC_IMM
463 mMips->XORI(Rd, Rn, src);
464 }
465 break;
466
467 case opORR:
468 if (dataProcAdrModes(Op2, src) == SRC_REG) {
469 mMips->OR(Rd, Rn, src);
470 } else { // adr mode was SRC_IMM
471 mMips->ORI(Rd, Rn, src);
472 }
473 break;
474
475 case opBIC:
476 if (dataProcAdrModes(Op2, src) == SRC_IMM) {
477 // if we are 16-bit imnmediate, load to AT reg
478 mMips->ORI(R_at, 0, src);
479 src = R_at;
480 }
481 mMips->NOT(R_at, src);
482 mMips->AND(Rd, Rn, R_at);
483 break;
484
485 case opRSB:
486 if (dataProcAdrModes(Op2, src) == SRC_IMM) {
487 // if we are 16-bit imnmediate, load to AT reg
488 mMips->ORI(R_at, 0, src);
489 src = R_at;
490 }
491 mMips->SUBU(Rd, src, Rn); // subu with the parameters reversed
492 break;
493
494 case opMOV:
495 if (Op2 < AMODE_REG) { // op2 is reg # in this case
496 mMips->MOVE(Rd, Op2);
497 } else if (Op2 == AMODE_IMM) {
498 if (amode.value > 0xffff) {
499 mMips->LUI(Rd, (amode.value >> 16));
500 if (amode.value & 0x0000ffff) {
501 mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
502 }
503 } else {
504 mMips->ORI(Rd, 0, amode.value);
505 }
506 } else if (Op2 == AMODE_REG_IMM) {
507 switch (amode.stype) {
508 case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
509 case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
510 case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
511 case ROR: if (mips32r2) {
512 mMips->ROTR(Rd, amode.reg, amode.value);
513 } else {
514 mMips->RORIsyn(Rd, amode.reg, amode.value);
515 }
516 break;
517 }
518 }
519 else {
520 // adr mode RRX is not used in GGL Assembler at this time
521 mMips->UNIMPL();
522 }
523 break;
524
525 case opMVN: // this is a 1's complement: NOT
526 if (Op2 < AMODE_REG) { // op2 is reg # in this case
527 mMips->NOR(Rd, Op2, 0); // NOT is NOR with 0
528 break;
529 } else if (Op2 == AMODE_IMM) {
530 if (amode.value > 0xffff) {
531 mMips->LUI(Rd, (amode.value >> 16));
532 if (amode.value & 0x0000ffff) {
533 mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff));
534 }
535 } else {
536 mMips->ORI(Rd, 0, amode.value);
537 }
538 } else if (Op2 == AMODE_REG_IMM) {
539 switch (amode.stype) {
540 case LSL: mMips->SLL(Rd, amode.reg, amode.value); break;
541 case LSR: mMips->SRL(Rd, amode.reg, amode.value); break;
542 case ASR: mMips->SRA(Rd, amode.reg, amode.value); break;
543 case ROR: if (mips32r2) {
544 mMips->ROTR(Rd, amode.reg, amode.value);
545 } else {
546 mMips->RORIsyn(Rd, amode.reg, amode.value);
547 }
548 break;
549 }
550 }
551 else {
552 // adr mode RRX is not used in GGL Assembler at this time
553 mMips->UNIMPL();
554 }
555 mMips->NOR(Rd, Rd, 0); // NOT is NOR with 0
556 break;
557
558 case opCMP:
559 // Either operand of a CMP instr could get overwritten by a subsequent
560 // conditional instruction, which is ok, _UNLESS_ there is a _second_
561 // conditional instruction. Under MIPS, this requires doing the comparison
562 // again (SLT), and the original operands must be available. (and this
563 // pattern of multiple conditional instructions from same CMP _is_ used
564 // in GGL-Assembler)
565 //
566 // For now, if a conditional instr overwrites the operands, we will
567 // move them to dedicated temp regs. This is ugly, and inefficient,
568 // and should be optimized.
569 //
570 // WARNING: making an _Assumption_ that CMP operand regs will NOT be
571 // trashed by intervening NON-conditional instructions. In the general
572 // case this is legal, but it is NOT currently done in GGL-Assembler.
573
574 cond.type = CMP_COND;
575 cond.r1 = Rn;
576 if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) {
577 cond.r2 = src;
578 } else { // adr mode was SRC_IMM
579 mMips->ORI(R_cmp2, R_zero, src);
580 cond.r2 = R_cmp2;
581 }
582
583 break;
584
585
586 case opTST:
587 case opTEQ:
588 case opCMN:
589 case opADC:
590 case opSBC:
591 case opRSC:
592 mMips->UNIMPL(); // currently unused in GGL Assembler code
593 break;
594 }
595
596 if (cc != AL) {
597 mMips->label(cond.label[cond.labelnum]);
598 }
599 if (s && opcode != opCMP) {
600 cond.type = SBIT_COND;
601 cond.r1 = Rd;
602 }
603}
604
605
606
607#if 0
608#pragma mark -
609#pragma mark Multiply...
610#endif
611
612// multiply, accumulate
613void ArmToMipsAssembler::MLA(int cc, int s,
614 int Rd, int Rm, int Rs, int Rn) {
615
616 mArmPC[mInum++] = pc(); // save starting PC for this instr
617
618 mMips->MUL(R_at, Rm, Rs);
619 mMips->ADDU(Rd, R_at, Rn);
620 if (s) {
621 cond.type = SBIT_COND;
622 cond.r1 = Rd;
623 }
624}
625
626void ArmToMipsAssembler::MUL(int cc, int s,
627 int Rd, int Rm, int Rs) {
628 mArmPC[mInum++] = pc();
629 mMips->MUL(Rd, Rm, Rs);
630 if (s) {
631 cond.type = SBIT_COND;
632 cond.r1 = Rd;
633 }
634}
635
636void ArmToMipsAssembler::UMULL(int cc, int s,
637 int RdLo, int RdHi, int Rm, int Rs) {
638 mArmPC[mInum++] = pc();
639 mMips->MULT(Rm, Rs);
640 mMips->MFHI(RdHi);
641 mMips->MFLO(RdLo);
642 if (s) {
643 cond.type = SBIT_COND;
644 cond.r1 = RdHi; // BUG...
645 LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
646 }
647}
648
649void ArmToMipsAssembler::UMUAL(int cc, int s,
650 int RdLo, int RdHi, int Rm, int Rs) {
651 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
652 "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
653 // *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) |
654 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
655 mArmPC[mInum++] = pc();
656 mMips->NOP2();
657 NOT_IMPLEMENTED();
658 if (s) {
659 cond.type = SBIT_COND;
660 cond.r1 = RdHi; // BUG...
661 LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n");
662 }
663}
664
665void ArmToMipsAssembler::SMULL(int cc, int s,
666 int RdLo, int RdHi, int Rm, int Rs) {
667 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
668 "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
669 // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) |
670 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
671 mArmPC[mInum++] = pc();
672 mMips->NOP2();
673 NOT_IMPLEMENTED();
674 if (s) {
675 cond.type = SBIT_COND;
676 cond.r1 = RdHi; // BUG...
677 LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n");
678 }
679}
680void ArmToMipsAssembler::SMUAL(int cc, int s,
681 int RdLo, int RdHi, int Rm, int Rs) {
682 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
683 "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
684 // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) |
685 // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
686 mArmPC[mInum++] = pc();
687 mMips->NOP2();
688 NOT_IMPLEMENTED();
689 if (s) {
690 cond.type = SBIT_COND;
691 cond.r1 = RdHi; // BUG...
692 LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n");
693 }
694}
695
696
697
698#if 0
699#pragma mark -
700#pragma mark Branches...
701#endif
702
703// branches...
704
705void ArmToMipsAssembler::B(int cc, const char* label)
706{
707 mArmPC[mInum++] = pc();
708 if (cond.type == SBIT_COND) { cond.r2 = R_zero; }
709
710 switch(cc) {
711 case EQ: mMips->BEQ(cond.r1, cond.r2, label); break;
712 case NE: mMips->BNE(cond.r1, cond.r2, label); break;
713 case HS: mMips->BGEU(cond.r1, cond.r2, label); break;
714 case LO: mMips->BLTU(cond.r1, cond.r2, label); break;
715 case MI: mMips->BLT(cond.r1, cond.r2, label); break;
716 case PL: mMips->BGE(cond.r1, cond.r2, label); break;
717
718 case HI: mMips->BGTU(cond.r1, cond.r2, label); break;
719 case LS: mMips->BLEU(cond.r1, cond.r2, label); break;
720 case GE: mMips->BGE(cond.r1, cond.r2, label); break;
721 case LT: mMips->BLT(cond.r1, cond.r2, label); break;
722 case GT: mMips->BGT(cond.r1, cond.r2, label); break;
723 case LE: mMips->BLE(cond.r1, cond.r2, label); break;
724 case AL: mMips->B(label); break;
725 case NV: /* B Never - no instruction */ break;
726
727 case VS:
728 case VC:
729 default:
730 LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc);
731 break;
732 }
733}
734
735void ArmToMipsAssembler::BL(int cc, const char* label)
736{
737 LOG_ALWAYS_FATAL("branch-and-link not supported yet\n");
738 mArmPC[mInum++] = pc();
739}
740
741// no use for Branches with integer PC, but they're in the Interface class ....
742void ArmToMipsAssembler::B(int cc, uint32_t* to_pc)
743{
744 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
745 mArmPC[mInum++] = pc();
746}
747
748void ArmToMipsAssembler::BL(int cc, uint32_t* to_pc)
749{
750 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
751 mArmPC[mInum++] = pc();
752}
753
754void ArmToMipsAssembler::BX(int cc, int Rn)
755{
756 LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n");
757 mArmPC[mInum++] = pc();
758}
759
760
761
762#if 0
763#pragma mark -
764#pragma mark Data Transfer...
765#endif
766
767// data transfer...
768void ArmToMipsAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset)
769{
770 mArmPC[mInum++] = pc();
771 // work-around for ARM default address mode of immed12_pre(0)
772 if (offset > AMODE_UNSUPPORTED) offset = 0;
773 switch (offset) {
774 case 0:
775 amode.value = 0;
776 amode.writeback = 0;
777 // fall thru to next case ....
778 case AMODE_IMM_12_PRE:
779 if (Rn == ARMAssemblerInterface::SP) {
780 Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP
781 }
782 mMips->LW(Rd, Rn, amode.value);
783 if (amode.writeback) { // OPTIONAL writeback on pre-index mode
784 mMips->ADDIU(Rn, Rn, amode.value);
785 }
786 break;
787 case AMODE_IMM_12_POST:
788 if (Rn == ARMAssemblerInterface::SP) {
789 Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP
790 }
791 mMips->LW(Rd, Rn, 0);
792 mMips->ADDIU(Rn, Rn, amode.value);
793 break;
794 case AMODE_REG_SCALE_PRE:
795 // we only support simple base + index, no advanced modes for this one yet
796 mMips->ADDU(R_at, Rn, amode.reg);
797 mMips->LW(Rd, R_at, 0);
798 break;
799 }
800}
801
802void ArmToMipsAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset)
803{
804 mArmPC[mInum++] = pc();
805 // work-around for ARM default address mode of immed12_pre(0)
806 if (offset > AMODE_UNSUPPORTED) offset = 0;
807 switch (offset) {
808 case 0:
809 amode.value = 0;
810 amode.writeback = 0;
811 // fall thru to next case ....
812 case AMODE_IMM_12_PRE:
813 mMips->LBU(Rd, Rn, amode.value);
814 if (amode.writeback) { // OPTIONAL writeback on pre-index mode
815 mMips->ADDIU(Rn, Rn, amode.value);
816 }
817 break;
818 case AMODE_IMM_12_POST:
819 mMips->LBU(Rd, Rn, 0);
820 mMips->ADDIU(Rn, Rn, amode.value);
821 break;
822 case AMODE_REG_SCALE_PRE:
823 // we only support simple base + index, no advanced modes for this one yet
824 mMips->ADDU(R_at, Rn, amode.reg);
825 mMips->LBU(Rd, R_at, 0);
826 break;
827 }
828
829}
830
831void ArmToMipsAssembler::STR(int cc, int Rd, int Rn, uint32_t offset)
832{
833 mArmPC[mInum++] = pc();
834 // work-around for ARM default address mode of immed12_pre(0)
835 if (offset > AMODE_UNSUPPORTED) offset = 0;
836 switch (offset) {
837 case 0:
838 amode.value = 0;
839 amode.writeback = 0;
840 // fall thru to next case ....
841 case AMODE_IMM_12_PRE:
842 if (Rn == ARMAssemblerInterface::SP) {
843 Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP
844 }
845 if (amode.writeback) { // OPTIONAL writeback on pre-index mode
846 // If we will writeback, then update the index reg, then store.
847 // This correctly handles stack-push case.
848 mMips->ADDIU(Rn, Rn, amode.value);
849 mMips->SW(Rd, Rn, 0);
850 } else {
851 // No writeback so store offset by value
852 mMips->SW(Rd, Rn, amode.value);
853 }
854 break;
855 case AMODE_IMM_12_POST:
856 mMips->SW(Rd, Rn, 0);
857 mMips->ADDIU(Rn, Rn, amode.value); // post index always writes back
858 break;
859 case AMODE_REG_SCALE_PRE:
860 // we only support simple base + index, no advanced modes for this one yet
861 mMips->ADDU(R_at, Rn, amode.reg);
862 mMips->SW(Rd, R_at, 0);
863 break;
864 }
865}
866
867void ArmToMipsAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset)
868{
869 mArmPC[mInum++] = pc();
870 // work-around for ARM default address mode of immed12_pre(0)
871 if (offset > AMODE_UNSUPPORTED) offset = 0;
872 switch (offset) {
873 case 0:
874 amode.value = 0;
875 amode.writeback = 0;
876 // fall thru to next case ....
877 case AMODE_IMM_12_PRE:
878 mMips->SB(Rd, Rn, amode.value);
879 if (amode.writeback) { // OPTIONAL writeback on pre-index mode
880 mMips->ADDIU(Rn, Rn, amode.value);
881 }
882 break;
883 case AMODE_IMM_12_POST:
884 mMips->SB(Rd, Rn, 0);
885 mMips->ADDIU(Rn, Rn, amode.value);
886 break;
887 case AMODE_REG_SCALE_PRE:
888 // we only support simple base + index, no advanced modes for this one yet
889 mMips->ADDU(R_at, Rn, amode.reg);
890 mMips->SB(Rd, R_at, 0);
891 break;
892 }
893}
894
895void ArmToMipsAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset)
896{
897 mArmPC[mInum++] = pc();
898 // work-around for ARM default address mode of immed8_pre(0)
899 if (offset > AMODE_UNSUPPORTED) offset = 0;
900 switch (offset) {
901 case 0:
902 amode.value = 0;
903 // fall thru to next case ....
904 case AMODE_IMM_8_PRE: // no support yet for writeback
905 mMips->LHU(Rd, Rn, amode.value);
906 break;
907 case AMODE_IMM_8_POST:
908 mMips->LHU(Rd, Rn, 0);
909 mMips->ADDIU(Rn, Rn, amode.value);
910 break;
911 case AMODE_REG_PRE:
912 // we only support simple base +/- index
913 if (amode.reg >= 0) {
914 mMips->ADDU(R_at, Rn, amode.reg);
915 } else {
916 mMips->SUBU(R_at, Rn, abs(amode.reg));
917 }
918 mMips->LHU(Rd, R_at, 0);
919 break;
920 }
921}
922
923void ArmToMipsAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset)
924{
925 mArmPC[mInum++] = pc();
926 mMips->NOP2();
927 NOT_IMPLEMENTED();
928}
929
930void ArmToMipsAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset)
931{
932 mArmPC[mInum++] = pc();
933 mMips->NOP2();
934 NOT_IMPLEMENTED();
935}
936
937void ArmToMipsAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset)
938{
939 mArmPC[mInum++] = pc();
940 // work-around for ARM default address mode of immed8_pre(0)
941 if (offset > AMODE_UNSUPPORTED) offset = 0;
942 switch (offset) {
943 case 0:
944 amode.value = 0;
945 // fall thru to next case ....
946 case AMODE_IMM_8_PRE: // no support yet for writeback
947 mMips->SH(Rd, Rn, amode.value);
948 break;
949 case AMODE_IMM_8_POST:
950 mMips->SH(Rd, Rn, 0);
951 mMips->ADDIU(Rn, Rn, amode.value);
952 break;
953 case AMODE_REG_PRE:
954 // we only support simple base +/- index
955 if (amode.reg >= 0) {
956 mMips->ADDU(R_at, Rn, amode.reg);
957 } else {
958 mMips->SUBU(R_at, Rn, abs(amode.reg));
959 }
960 mMips->SH(Rd, R_at, 0);
961 break;
962 }
963}
964
965
966
967#if 0
968#pragma mark -
969#pragma mark Block Data Transfer...
970#endif
971
972// block data transfer...
973void ArmToMipsAssembler::LDM(int cc, int dir,
974 int Rn, int W, uint32_t reg_list)
975{ // ED FD EA FA IB IA DB DA
976 // const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
977 // const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 };
978 // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
979 // (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list;
980 mArmPC[mInum++] = pc();
981 mMips->NOP2();
982 NOT_IMPLEMENTED();
983}
984
985void ArmToMipsAssembler::STM(int cc, int dir,
986 int Rn, int W, uint32_t reg_list)
987{ // FA EA FD ED IB IA DB DA
988 // const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 };
989 // const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 };
990 // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
991 // (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list;
992 mArmPC[mInum++] = pc();
993 mMips->NOP2();
994 NOT_IMPLEMENTED();
995}
996
997
998
999#if 0
1000#pragma mark -
1001#pragma mark Special...
1002#endif
1003
1004// special...
1005void ArmToMipsAssembler::SWP(int cc, int Rn, int Rd, int Rm) {
1006 // *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
1007 mArmPC[mInum++] = pc();
1008 mMips->NOP2();
1009 NOT_IMPLEMENTED();
1010}
1011
1012void ArmToMipsAssembler::SWPB(int cc, int Rn, int Rd, int Rm) {
1013 // *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
1014 mArmPC[mInum++] = pc();
1015 mMips->NOP2();
1016 NOT_IMPLEMENTED();
1017}
1018
1019void ArmToMipsAssembler::SWI(int cc, uint32_t comment) {
1020 // *mPC++ = (cc<<28) | (0xF<<24) | comment;
1021 mArmPC[mInum++] = pc();
1022 mMips->NOP2();
1023 NOT_IMPLEMENTED();
1024}
1025
1026
1027#if 0
1028#pragma mark -
1029#pragma mark DSP instructions...
1030#endif
1031
1032// DSP instructions...
1033void ArmToMipsAssembler::PLD(int Rn, uint32_t offset) {
1034 LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))),
1035 "PLD only P=1, W=0");
1036 // *mPC++ = 0xF550F000 | (Rn<<16) | offset;
1037 mArmPC[mInum++] = pc();
1038 mMips->NOP2();
1039 NOT_IMPLEMENTED();
1040}
1041
1042void ArmToMipsAssembler::CLZ(int cc, int Rd, int Rm)
1043{
1044 mArmPC[mInum++] = pc();
1045 mMips->CLZ(Rd, Rm);
1046}
1047
1048void ArmToMipsAssembler::QADD(int cc, int Rd, int Rm, int Rn)
1049{
1050 // *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm;
1051 mArmPC[mInum++] = pc();
1052 mMips->NOP2();
1053 NOT_IMPLEMENTED();
1054}
1055
1056void ArmToMipsAssembler::QDADD(int cc, int Rd, int Rm, int Rn)
1057{
1058 // *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm;
1059 mArmPC[mInum++] = pc();
1060 mMips->NOP2();
1061 NOT_IMPLEMENTED();
1062}
1063
1064void ArmToMipsAssembler::QSUB(int cc, int Rd, int Rm, int Rn)
1065{
1066 // *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm;
1067 mArmPC[mInum++] = pc();
1068 mMips->NOP2();
1069 NOT_IMPLEMENTED();
1070}
1071
1072void ArmToMipsAssembler::QDSUB(int cc, int Rd, int Rm, int Rn)
1073{
1074 // *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm;
1075 mArmPC[mInum++] = pc();
1076 mMips->NOP2();
1077 NOT_IMPLEMENTED();
1078}
1079
1080// 16 x 16 signed multiply (like SMLAxx without the accumulate)
1081void ArmToMipsAssembler::SMUL(int cc, int xy,
1082 int Rd, int Rm, int Rs)
1083{
1084 mArmPC[mInum++] = pc();
1085
1086 // the 16 bits may be in the top or bottom half of 32-bit source reg,
1087 // as defined by the codes BB, BT, TB, TT (compressed param xy)
1088 // where x corresponds to Rm and y to Rs
1089
1090 // select half-reg for Rm
1091 if (xy & xyTB) {
1092 // use top 16-bits
1093 mMips->SRA(R_at, Rm, 16);
1094 } else {
1095 // use bottom 16, but sign-extend to 32
1096 if (mips32r2) {
1097 mMips->SEH(R_at, Rm);
1098 } else {
1099 mMips->SLL(R_at, Rm, 16);
1100 mMips->SRA(R_at, R_at, 16);
1101 }
1102 }
1103 // select half-reg for Rs
1104 if (xy & xyBT) {
1105 // use top 16-bits
1106 mMips->SRA(R_at2, Rs, 16);
1107 } else {
1108 // use bottom 16, but sign-extend to 32
1109 if (mips32r2) {
1110 mMips->SEH(R_at2, Rs);
1111 } else {
1112 mMips->SLL(R_at2, Rs, 16);
1113 mMips->SRA(R_at2, R_at2, 16);
1114 }
1115 }
1116 mMips->MUL(Rd, R_at, R_at2);
1117}
1118
1119// signed 32b x 16b multiple, save top 32-bits of 48-bit result
1120void ArmToMipsAssembler::SMULW(int cc, int y,
1121 int Rd, int Rm, int Rs)
1122{
1123 mArmPC[mInum++] = pc();
1124
1125 // the selector yT or yB refers to reg Rs
1126 if (y & yT) {
1127 // zero the bottom 16-bits, with 2 shifts, it can affect result
1128 mMips->SRL(R_at, Rs, 16);
1129 mMips->SLL(R_at, R_at, 16);
1130
1131 } else {
1132 // move low 16-bit half, to high half
1133 mMips->SLL(R_at, Rs, 16);
1134 }
1135 mMips->MULT(Rm, R_at);
1136 mMips->MFHI(Rd);
1137}
1138
1139// 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn
1140void ArmToMipsAssembler::SMLA(int cc, int xy,
1141 int Rd, int Rm, int Rs, int Rn)
1142{
1143 mArmPC[mInum++] = pc();
1144
1145 // the 16 bits may be in the top or bottom half of 32-bit source reg,
1146 // as defined by the codes BB, BT, TB, TT (compressed param xy)
1147 // where x corresponds to Rm and y to Rs
1148
1149 // select half-reg for Rm
1150 if (xy & xyTB) {
1151 // use top 16-bits
1152 mMips->SRA(R_at, Rm, 16);
1153 } else {
1154 // use bottom 16, but sign-extend to 32
1155 if (mips32r2) {
1156 mMips->SEH(R_at, Rm);
1157 } else {
1158 mMips->SLL(R_at, Rm, 16);
1159 mMips->SRA(R_at, R_at, 16);
1160 }
1161 }
1162 // select half-reg for Rs
1163 if (xy & xyBT) {
1164 // use top 16-bits
1165 mMips->SRA(R_at2, Rs, 16);
1166 } else {
1167 // use bottom 16, but sign-extend to 32
1168 if (mips32r2) {
1169 mMips->SEH(R_at2, Rs);
1170 } else {
1171 mMips->SLL(R_at2, Rs, 16);
1172 mMips->SRA(R_at2, R_at2, 16);
1173 }
1174 }
1175
1176 mMips->MUL(R_at, R_at, R_at2);
1177 mMips->ADDU(Rd, R_at, Rn);
1178}
1179
1180void ArmToMipsAssembler::SMLAL(int cc, int xy,
1181 int RdHi, int RdLo, int Rs, int Rm)
1182{
1183 // *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm;
1184 mArmPC[mInum++] = pc();
1185 mMips->NOP2();
1186 NOT_IMPLEMENTED();
1187}
1188
1189void ArmToMipsAssembler::SMLAW(int cc, int y,
1190 int Rd, int Rm, int Rs, int Rn)
1191{
1192 // *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm;
1193 mArmPC[mInum++] = pc();
1194 mMips->NOP2();
1195 NOT_IMPLEMENTED();
1196}
1197
1198// used by ARMv6 version of GGLAssembler::filter32
1199void ArmToMipsAssembler::UXTB16(int cc, int Rd, int Rm, int rotate)
1200{
1201 mArmPC[mInum++] = pc();
1202
1203 //Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),
1204 //Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
1205
1206 mMips->ROTR(Rm, Rm, rotate * 8);
1207 mMips->AND(Rd, Rm, 0x00FF00FF);
1208}
1209
1210void ArmToMipsAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
1211{
1212 /* Placeholder for UBFX */
1213 mArmPC[mInum++] = pc();
1214
1215 mMips->NOP2();
1216 NOT_IMPLEMENTED();
1217}
1218
1219
1220
1221
1222
1223#if 0
1224#pragma mark -
1225#pragma mark MIPS Assembler...
1226#endif
1227
1228
1229//**************************************************************************
1230//**************************************************************************
1231//**************************************************************************
1232
1233
1234/* mips assembler
1235** this is a subset of mips32r2, targeted specifically at ARM instruction
1236** replacement in the pixelflinger/codeflinger code.
1237**
1238** To that end, there is no need for floating point, or priviledged
1239** instructions. This all runs in user space, no float.
1240**
1241** The syntax makes no attempt to be as complete as the assember, with
1242** synthetic instructions, and automatic recognition of immedate operands
1243** (use the immediate form of the instruction), etc.
1244**
1245** We start with mips32r1, and may add r2 and dsp extensions if cpu
1246** supports. Decision will be made at compile time, based on gcc
1247** options. (makes sense since android will be built for a a specific
1248** device)
1249*/
1250
1251MIPSAssembler::MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent)
1252 : mParent(parent),
1253 mAssembly(assembly)
1254{
1255 mBase = mPC = (uint32_t *)assembly->base();
1256 mDuration = ggl_system_time();
1257}
1258
1259MIPSAssembler::~MIPSAssembler()
1260{
1261}
1262
1263
1264uint32_t* MIPSAssembler::pc() const
1265{
1266 return mPC;
1267}
1268
1269uint32_t* MIPSAssembler::base() const
1270{
1271 return mBase;
1272}
1273
1274void MIPSAssembler::reset()
1275{
1276 mBase = mPC = (uint32_t *)mAssembly->base();
1277 mBranchTargets.clear();
1278 mLabels.clear();
1279 mLabelsInverseMapping.clear();
1280 mComments.clear();
1281}
1282
1283
1284// convert tabs to spaces, and remove any newline
1285// works with strings of limited size (makes a temp copy)
1286#define TABSTOP 8
1287void MIPSAssembler::string_detab(char *s)
1288{
1289 char *os = s;
1290 char temp[100];
1291 char *t = temp;
1292 int len = 99;
1293 int i = TABSTOP;
1294
1295 while (*s && len-- > 0) {
1296 if (*s == '\n') { s++; continue; }
1297 if (*s == '\t') {
1298 s++;
1299 for ( ; i>0; i--) {*t++ = ' '; len--; }
1300 } else {
1301 *t++ = *s++;
1302 }
1303 if (i <= 0) i = TABSTOP;
1304 i--;
1305 }
1306 *t = '\0';
1307 strcpy(os, temp);
1308}
1309
1310void MIPSAssembler::string_pad(char *s, int padded_len)
1311{
1312 int len = strlen(s);
1313 s += len;
1314 for (int i = padded_len - len; i > 0; --i) {
1315 *s++ = ' ';
1316 }
1317 *s = '\0';
1318}
1319
1320// ----------------------------------------------------------------------------
1321
1322void MIPSAssembler::disassemble(const char* name)
1323{
1324 char di_buf[140];
1325
1326 if (name) {
1327 ALOGW("%s:\n", name);
1328 }
1329
1330 bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true;
1331
1332 typedef char dstr[40];
1333 dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer;
1334
1335 if (mParent->mArmDisassemblyBuffer != NULL) {
1336 for (int i=0; i<mParent->mArmInstrCount; ++i) {
1337 string_detab(lines[i]);
1338 }
1339 }
1340
1341 // iArm is an index to Arm instructions 1...n for this assembly sequence
1342 // mArmPC[iArm] holds the value of the Mips-PC for the first MIPS
1343 // instruction corresponding to that Arm instruction number
1344
1345 int iArm = 0;
1346 size_t count = pc()-base();
1347 uint32_t* mipsPC = base();
1348 while (count--) {
1349 ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC);
1350 if (label >= 0) {
1351 ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label));
1352 }
1353 ssize_t comment = mComments.indexOfKey(mipsPC);
1354 if (comment >= 0) {
1355 ALOGW("; %s\n", mComments.valueAt(comment));
1356 }
1357 // ALOGW("%08x: %08x ", int(i), int(i[0]));
1358 ::mips_disassem(mipsPC, di_buf, arm_disasm_fmt);
1359 string_detab(di_buf);
1360 string_pad(di_buf, 30);
1361 ALOGW("%08x: %08x %s", uint32_t(mipsPC), uint32_t(*mipsPC), di_buf);
1362 mipsPC++;
1363 }
1364}
1365
1366void MIPSAssembler::comment(const char* string)
1367{
1368 mComments.add(pc(), string);
1369}
1370
1371void MIPSAssembler::label(const char* theLabel)
1372{
1373 mLabels.add(theLabel, pc());
1374 mLabelsInverseMapping.add(pc(), theLabel);
1375}
1376
1377
1378void MIPSAssembler::prolog()
1379{
1380 // empty - done in ArmToMipsAssembler
1381}
1382
1383void MIPSAssembler::epilog(uint32_t touched)
1384{
1385 // empty - done in ArmToMipsAssembler
1386}
1387
1388int MIPSAssembler::generate(const char* name)
1389{
1390 // fixup all the branches
1391 size_t count = mBranchTargets.size();
1392 while (count--) {
1393 const branch_target_t& bt = mBranchTargets[count];
1394 uint32_t* target_pc = mLabels.valueFor(bt.label);
1395 LOG_ALWAYS_FATAL_IF(!target_pc,
1396 "error resolving branch targets, target_pc is null");
1397 int32_t offset = int32_t(target_pc - (bt.pc+1));
1398 *bt.pc |= offset & 0x00FFFF;
1399 }
1400
1401 mAssembly->resize( int(pc()-base())*4 );
1402
1403 // the instruction & data caches are flushed by CodeCache
1404 const int64_t duration = ggl_system_time() - mDuration;
1405 const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n";
1406 ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
1407
1408#if defined(WITH_LIB_HARDWARE)
1409 if (__builtin_expect(mQemuTracing, 0)) {
1410 int err = qemu_add_mapping(int(base()), name);
1411 mQemuTracing = (err >= 0);
1412 }
1413#endif
1414
1415 char value[PROPERTY_VALUE_MAX];
1416 value[0] = '\0';
1417
1418 property_get("debug.pf.disasm", value, "0");
1419
1420 if (atoi(value) != 0) {
1421 disassemble(name);
1422 }
1423
1424 return NO_ERROR;
1425}
1426
1427uint32_t* MIPSAssembler::pcForLabel(const char* label)
1428{
1429 return mLabels.valueFor(label);
1430}
1431
1432
1433
1434#if 0
1435#pragma mark -
1436#pragma mark Arithmetic...
1437#endif
1438
1439void MIPSAssembler::ADDU(int Rd, int Rs, int Rt)
1440{
1441 *mPC++ = (spec_op<<OP_SHF) | (addu_fn<<FUNC_SHF)
1442 | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF);
1443}
1444
1445// MD00086 pdf says this is: ADDIU rt, rs, imm -- they do not use Rd
1446void MIPSAssembler::ADDIU(int Rt, int Rs, int16_t imm)
1447{
1448 *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1449}
1450
1451
1452void MIPSAssembler::SUBU(int Rd, int Rs, int Rt)
1453{
1454 *mPC++ = (spec_op<<OP_SHF) | (subu_fn<<FUNC_SHF) |
1455 (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
1456}
1457
1458
1459void MIPSAssembler::SUBIU(int Rt, int Rs, int16_t imm) // really addiu(d, s, -j)
1460{
1461 *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16);
1462}
1463
1464
1465void MIPSAssembler::NEGU(int Rd, int Rs) // really subu(d, zero, s)
1466{
1467 MIPSAssembler::SUBU(Rd, 0, Rs);
1468}
1469
1470void MIPSAssembler::MUL(int Rd, int Rs, int Rt)
1471{
1472 *mPC++ = (spec2_op<<OP_SHF) | (mul_fn<<FUNC_SHF) |
1473 (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ;
1474}
1475
1476void MIPSAssembler::MULT(int Rs, int Rt) // dest is hi,lo
1477{
1478 *mPC++ = (spec_op<<OP_SHF) | (mult_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1479}
1480
1481void MIPSAssembler::MULTU(int Rs, int Rt) // dest is hi,lo
1482{
1483 *mPC++ = (spec_op<<OP_SHF) | (multu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1484}
1485
1486void MIPSAssembler::MADD(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt
1487{
1488 *mPC++ = (spec2_op<<OP_SHF) | (madd_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1489}
1490
1491void MIPSAssembler::MADDU(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt
1492{
1493 *mPC++ = (spec2_op<<OP_SHF) | (maddu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1494}
1495
1496
1497void MIPSAssembler::MSUB(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt
1498{
1499 *mPC++ = (spec2_op<<OP_SHF) | (msub_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1500}
1501
1502void MIPSAssembler::MSUBU(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt
1503{
1504 *mPC++ = (spec2_op<<OP_SHF) | (msubu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF);
1505}
1506
1507
1508void MIPSAssembler::SEB(int Rd, int Rt) // sign-extend byte (mips32r2)
1509{
1510 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seb_fn << SA_SHF) |
1511 (Rt<<RT_SHF) | (Rd<<RD_SHF);
1512}
1513
1514void MIPSAssembler::SEH(int Rd, int Rt) // sign-extend half-word (mips32r2)
1515{
1516 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seh_fn << SA_SHF) |
1517 (Rt<<RT_SHF) | (Rd<<RD_SHF);
1518}
1519
1520
1521
1522#if 0
1523#pragma mark -
1524#pragma mark Comparisons...
1525#endif
1526
1527void MIPSAssembler::SLT(int Rd, int Rs, int Rt)
1528{
1529 *mPC++ = (spec_op<<OP_SHF) | (slt_fn<<FUNC_SHF) |
1530 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1531}
1532
1533void MIPSAssembler::SLTI(int Rt, int Rs, int16_t imm)
1534{
1535 *mPC++ = (slti_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1536}
1537
1538
1539void MIPSAssembler::SLTU(int Rd, int Rs, int Rt)
1540{
1541 *mPC++ = (spec_op<<OP_SHF) | (sltu_fn<<FUNC_SHF) |
1542 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1543}
1544
1545void MIPSAssembler::SLTIU(int Rt, int Rs, int16_t imm)
1546{
1547 *mPC++ = (sltiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1548}
1549
1550
1551
1552#if 0
1553#pragma mark -
1554#pragma mark Logical...
1555#endif
1556
1557void MIPSAssembler::AND(int Rd, int Rs, int Rt)
1558{
1559 *mPC++ = (spec_op<<OP_SHF) | (and_fn<<FUNC_SHF) |
1560 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1561}
1562
1563void MIPSAssembler::ANDI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate
1564{
1565 *mPC++ = (andi_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1566}
1567
1568
1569void MIPSAssembler::OR(int Rd, int Rs, int Rt)
1570{
1571 *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
1572 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1573}
1574
1575void MIPSAssembler::ORI(int Rt, int Rs, uint16_t imm)
1576{
1577 *mPC++ = (ori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1578}
1579
1580void MIPSAssembler::NOR(int Rd, int Rs, int Rt)
1581{
1582 *mPC++ = (spec_op<<OP_SHF) | (nor_fn<<FUNC_SHF) |
1583 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1584}
1585
1586void MIPSAssembler::NOT(int Rd, int Rs)
1587{
1588 MIPSAssembler::NOR(Rd, Rs, 0); // NOT(d,s) = NOR(d,s,zero)
1589}
1590
1591void MIPSAssembler::XOR(int Rd, int Rs, int Rt)
1592{
1593 *mPC++ = (spec_op<<OP_SHF) | (xor_fn<<FUNC_SHF) |
1594 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1595}
1596
1597void MIPSAssembler::XORI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate
1598{
1599 *mPC++ = (xori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16);
1600}
1601
1602void MIPSAssembler::SLL(int Rd, int Rt, int shft)
1603{
1604 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) |
1605 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1606}
1607
1608void MIPSAssembler::SLLV(int Rd, int Rt, int Rs)
1609{
1610 *mPC++ = (spec_op<<OP_SHF) | (sllv_fn<<FUNC_SHF) |
1611 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1612}
1613
1614void MIPSAssembler::SRL(int Rd, int Rt, int shft)
1615{
1616 *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
1617 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1618}
1619
1620void MIPSAssembler::SRLV(int Rd, int Rt, int Rs)
1621{
1622 *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
1623 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1624}
1625
1626void MIPSAssembler::SRA(int Rd, int Rt, int shft)
1627{
1628 *mPC++ = (spec_op<<OP_SHF) | (sra_fn<<FUNC_SHF) |
1629 (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1630}
1631
1632void MIPSAssembler::SRAV(int Rd, int Rt, int Rs)
1633{
1634 *mPC++ = (spec_op<<OP_SHF) | (srav_fn<<FUNC_SHF) |
1635 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1636}
1637
1638void MIPSAssembler::ROTR(int Rd, int Rt, int shft) // mips32r2
1639{
1640 // note weird encoding (SRL + 1)
1641 *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) |
1642 (1<<RS_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF);
1643}
1644
1645void MIPSAssembler::ROTRV(int Rd, int Rt, int Rs) // mips32r2
1646{
1647 // note weird encoding (SRLV + 1)
1648 *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) |
1649 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (1<<RE_SHF);
1650}
1651
1652// uses at2 register (mapped to some appropriate mips reg)
1653void MIPSAssembler::RORsyn(int Rd, int Rt, int Rs)
1654{
1655 // synthetic: d = t rotated by s
1656 MIPSAssembler::NEGU(R_at2, Rs);
1657 MIPSAssembler::SLLV(R_at2, Rt, R_at2);
1658 MIPSAssembler::SRLV(Rd, Rt, Rs);
1659 MIPSAssembler::OR(Rd, Rd, R_at2);
1660}
1661
1662// immediate version - uses at2 register (mapped to some appropriate mips reg)
1663void MIPSAssembler::RORIsyn(int Rd, int Rt, int rot)
1664{
1665 // synthetic: d = t rotated by immed rot
1666 // d = s >> rot | s << (32-rot)
1667 MIPSAssembler::SLL(R_at2, Rt, 32-rot);
1668 MIPSAssembler::SRL(Rd, Rt, rot);
1669 MIPSAssembler::OR(Rd, Rd, R_at2);
1670}
1671
1672void MIPSAssembler::CLO(int Rd, int Rs)
1673{
1674 // Rt field must have same gpr # as Rd
1675 *mPC++ = (spec2_op<<OP_SHF) | (clo_fn<<FUNC_SHF) |
1676 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
1677}
1678
1679void MIPSAssembler::CLZ(int Rd, int Rs)
1680{
1681 // Rt field must have same gpr # as Rd
1682 *mPC++ = (spec2_op<<OP_SHF) | (clz_fn<<FUNC_SHF) |
1683 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF);
1684}
1685
1686void MIPSAssembler::WSBH(int Rd, int Rt) // mips32r2
1687{
1688 *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (wsbh_fn << SA_SHF) |
1689 (Rt<<RT_SHF) | (Rd<<RD_SHF);
1690}
1691
1692
1693
1694#if 0
1695#pragma mark -
1696#pragma mark Load/store...
1697#endif
1698
1699void MIPSAssembler::LW(int Rt, int Rbase, int16_t offset)
1700{
1701 *mPC++ = (lw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1702}
1703
1704void MIPSAssembler::SW(int Rt, int Rbase, int16_t offset)
1705{
1706 *mPC++ = (sw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1707}
1708
1709// lb is sign-extended
1710void MIPSAssembler::LB(int Rt, int Rbase, int16_t offset)
1711{
1712 *mPC++ = (lb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1713}
1714
1715void MIPSAssembler::LBU(int Rt, int Rbase, int16_t offset)
1716{
1717 *mPC++ = (lbu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1718}
1719
1720void MIPSAssembler::SB(int Rt, int Rbase, int16_t offset)
1721{
1722 *mPC++ = (sb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1723}
1724
1725// lh is sign-extended
1726void MIPSAssembler::LH(int Rt, int Rbase, int16_t offset)
1727{
1728 *mPC++ = (lh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1729}
1730
1731void MIPSAssembler::LHU(int Rt, int Rbase, int16_t offset)
1732{
1733 *mPC++ = (lhu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1734}
1735
1736void MIPSAssembler::SH(int Rt, int Rbase, int16_t offset)
1737{
1738 *mPC++ = (sh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1739}
1740
1741void MIPSAssembler::LUI(int Rt, int16_t offset)
1742{
1743 *mPC++ = (lui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16);
1744}
1745
1746
1747
1748#if 0
1749#pragma mark -
1750#pragma mark Register move...
1751#endif
1752
1753void MIPSAssembler::MOVE(int Rd, int Rs)
1754{
1755 // encoded as "or rd, rs, zero"
1756 *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) |
1757 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (0<<RT_SHF);
1758}
1759
1760void MIPSAssembler::MOVN(int Rd, int Rs, int Rt)
1761{
1762 *mPC++ = (spec_op<<OP_SHF) | (movn_fn<<FUNC_SHF) |
1763 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1764}
1765
1766void MIPSAssembler::MOVZ(int Rd, int Rs, int Rt)
1767{
1768 *mPC++ = (spec_op<<OP_SHF) | (movz_fn<<FUNC_SHF) |
1769 (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF);
1770}
1771
1772void MIPSAssembler::MFHI(int Rd)
1773{
1774 *mPC++ = (spec_op<<OP_SHF) | (mfhi_fn<<FUNC_SHF) | (Rd<<RD_SHF);
1775}
1776
1777void MIPSAssembler::MFLO(int Rd)
1778{
1779 *mPC++ = (spec_op<<OP_SHF) | (mflo_fn<<FUNC_SHF) | (Rd<<RD_SHF);
1780}
1781
1782void MIPSAssembler::MTHI(int Rs)
1783{
1784 *mPC++ = (spec_op<<OP_SHF) | (mthi_fn<<FUNC_SHF) | (Rs<<RS_SHF);
1785}
1786
1787void MIPSAssembler::MTLO(int Rs)
1788{
1789 *mPC++ = (spec_op<<OP_SHF) | (mtlo_fn<<FUNC_SHF) | (Rs<<RS_SHF);
1790}
1791
1792
1793
1794#if 0
1795#pragma mark -
1796#pragma mark Branch...
1797#endif
1798
1799// temporarily forcing a NOP into branch-delay slot, just to be safe
1800// todo: remove NOP, optimze use of delay slots
1801void MIPSAssembler::B(const char* label)
1802{
1803 mBranchTargets.add(branch_target_t(label, mPC));
1804
1805 // encoded as BEQ zero, zero, offset
1806 *mPC++ = (beq_op<<OP_SHF) | (0<<RT_SHF)
1807 | (0<<RS_SHF) | 0; // offset filled in later
1808
1809 MIPSAssembler::NOP();
1810}
1811
1812void MIPSAssembler::BEQ(int Rs, int Rt, const char* label)
1813{
1814 mBranchTargets.add(branch_target_t(label, mPC));
1815 *mPC++ = (beq_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
1816 MIPSAssembler::NOP();
1817}
1818
1819void MIPSAssembler::BNE(int Rs, int Rt, const char* label)
1820{
1821 mBranchTargets.add(branch_target_t(label, mPC));
1822 *mPC++ = (bne_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0;
1823 MIPSAssembler::NOP();
1824}
1825
1826void MIPSAssembler::BLEZ(int Rs, const char* label)
1827{
1828 mBranchTargets.add(branch_target_t(label, mPC));
1829 *mPC++ = (blez_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
1830 MIPSAssembler::NOP();
1831}
1832
1833void MIPSAssembler::BLTZ(int Rs, const char* label)
1834{
1835 mBranchTargets.add(branch_target_t(label, mPC));
1836 *mPC++ = (regimm_op<<OP_SHF) | (bltz_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
1837 MIPSAssembler::NOP();
1838}
1839
1840void MIPSAssembler::BGTZ(int Rs, const char* label)
1841{
1842 mBranchTargets.add(branch_target_t(label, mPC));
1843 *mPC++ = (bgtz_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0;
1844 MIPSAssembler::NOP();
1845}
1846
1847
1848void MIPSAssembler::BGEZ(int Rs, const char* label)
1849{
1850 mBranchTargets.add(branch_target_t(label, mPC));
1851 *mPC++ = (regimm_op<<OP_SHF) | (bgez_fn<<RT_SHF) | (Rs<<RS_SHF) | 0;
1852 MIPSAssembler::NOP();
1853}
1854
1855void MIPSAssembler::JR(int Rs)
1856{
1857 *mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jr_fn << FUNC_SHF);
1858 MIPSAssembler::NOP();
1859}
1860
1861
1862#if 0
1863#pragma mark -
1864#pragma mark Synthesized Branch...
1865#endif
1866
1867// synthetic variants of branches (using slt & friends)
1868void MIPSAssembler::BEQZ(int Rs, const char* label)
1869{
1870 BEQ(Rs, R_zero, label);
1871}
1872
1873void MIPSAssembler::BNEZ(int Rs, const char* label)
1874{
1875 BNE(R_at, R_zero, label);
1876}
1877
1878void MIPSAssembler::BGE(int Rs, int Rt, const char* label)
1879{
1880 SLT(R_at, Rs, Rt);
1881 BEQ(R_at, R_zero, label);
1882}
1883
1884void MIPSAssembler::BGEU(int Rs, int Rt, const char* label)
1885{
1886 SLTU(R_at, Rs, Rt);
1887 BEQ(R_at, R_zero, label);
1888}
1889
1890void MIPSAssembler::BGT(int Rs, int Rt, const char* label)
1891{
1892 SLT(R_at, Rt, Rs); // rev
1893 BNE(R_at, R_zero, label);
1894}
1895
1896void MIPSAssembler::BGTU(int Rs, int Rt, const char* label)
1897{
1898 SLTU(R_at, Rt, Rs); // rev
1899 BNE(R_at, R_zero, label);
1900}
1901
1902void MIPSAssembler::BLE(int Rs, int Rt, const char* label)
1903{
1904 SLT(R_at, Rt, Rs); // rev
1905 BEQ(R_at, R_zero, label);
1906}
1907
1908void MIPSAssembler::BLEU(int Rs, int Rt, const char* label)
1909{
1910 SLTU(R_at, Rt, Rs); // rev
1911 BEQ(R_at, R_zero, label);
1912}
1913
1914void MIPSAssembler::BLT(int Rs, int Rt, const char* label)
1915{
1916 SLT(R_at, Rs, Rt);
1917 BNE(R_at, R_zero, label);
1918}
1919
1920void MIPSAssembler::BLTU(int Rs, int Rt, const char* label)
1921{
1922 SLTU(R_at, Rs, Rt);
1923 BNE(R_at, R_zero, label);
1924}
1925
1926
1927
1928
1929#if 0
1930#pragma mark -
1931#pragma mark Misc...
1932#endif
1933
1934void MIPSAssembler::NOP(void)
1935{
1936 // encoded as "sll zero, zero, 0", which is all zero
1937 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF);
1938}
1939
1940// using this as special opcode for not-yet-implemented ARM instruction
1941void MIPSAssembler::NOP2(void)
1942{
1943 // encoded as "sll zero, zero, 2", still a nop, but a unique code
1944 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (2 << RE_SHF);
1945}
1946
1947// using this as special opcode for purposefully NOT implemented ARM instruction
1948void MIPSAssembler::UNIMPL(void)
1949{
1950 // encoded as "sll zero, zero, 3", still a nop, but a unique code
1951 *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (3 << RE_SHF);
1952}
1953
1954
1955}; // namespace android:
1956
1957